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Abstract

This paper derives a novel representation of the exponential discounting

model that allows one to assess departures from the model via a measure of

efficiency. The approach uses a revealed preference methodology that does

not make any parametric assumption on the utility function and allows

for unrestricted heterogeneity. The method is illustrated using longitudinal

data from checkout scanners and gives insights into sources of departure

from exponential discounting.
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1 Introduction

The exponential discounting model is a predominant tool for analyzing dynamic

choice in applied work. Its attractiveness rests in that time preferences are sum-

marized by a single parameter—the discount factor. This allows one to tractably

analyze a decision maker’s intertemporal choices, which is crucial in a vast range

of applications. However, a common feature in this literature is the specification

of the consumer preferences. This constitutes a potentially important limitation

as erroneously specifying preferences may lead to the erroneous rejection of the

model.

At its core, the exponential discounting model assumes that the utility function

is additively time-separable and stationary. Under these assumptions, the transi-

tivity of preferences can be characterized by the well-known Generalized Axiom
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of Revealed Preference (GARP). In particular, Afriat (1967) showed that for any

finite data set {(ρt, ct)}t∈T of discounted prices and demands, GARP is necessary

and sufficient for the existence of a well-behaved utility function that rationalizes

the data. The distinctive feature of exponential discounting, though, is the pre-

diction that consumers will be time consistent. Namely, it requires consumers to

commit to their initial plan as time unfolds.1

This paper shows that the exponential discounting model, which is normally

stated as a dynamic maximization problem with an intertemporal budget con-

straint, may be expressed as a repeated static utility maximization problem with-

out a budget constraint. Using this novel representation, I propose an efficiency

index similar to the critical cost efficiency index (CCEI) of Afriat (1973) to account

for small optimization errors in the exponential discounting model. Importantly,

this index can be decomposed in two mutually exclusive indices based on a similar

approach as Heufer and Hjertstrand (2019). Precisely, this new index can be split

into an index that captures deviations from GARP and another that captures

deviations from time consistency. As such, I am able to gain new insights on the

sources of departure from exponential discounting.

The novel representation of exponential discounting is equivalent to that of

Browning (1989) but can easily accommodate optimization errors. A different

strand of literature extends exponential discounting to richer settings such as

preference heterogeneity and renegotiations within the household (Adams et al.,

2014) and habit formation (Crawford, 2010; Demuynck and Verriest, 2013). In a

different direction, Echenique, Imai and Saito (2020) provide an axiomatic char-

acterization of exponential discounting that applies in experimental data sets.2

The current approach rather applies in field data where consumers make choices

over multidimensional bundles and focuses on understanding deviations from the

model.

1In experimental settings, a preference reversal occurs when the consumer chooses a sooner-
smaller reward over a later-larger one and then switches to the later-larger reward when an
equal delay is added to both outcomes. This behavior violates time consistency if the consumer
deviates from his plan and chooses the sooner-smaller reward in the future (Halevy, 2015).

2That is, their approach applies to a situation where consumers make multiple intertemporal
choices over a single good. They also provide a characterization of other models such as quasi-
hyperbolic discounting.
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2 Exponential Discounting Model

2.1 Notation

The typical scenario under consideration is that of purchases made by a consumer

over a finite time window. Let L ∈ {1, ..., L} denote the number of observed

commodities and T = {0, ..., T} the periods for which data on consumers are

observable. For any good l ∈ L and time period t ∈ T , denote discounted price by

ρl,t = pl,t/
∏t

i=0(1 + ri), where pl,t is the spot price and ri is the interest rate, and

denote consumption by cl,t.
3 An observation is therefore a pair (ρt, ct) ∈ RL

++×RL
+

and, accordingly, a data set is written as {(ρt, ct)}t∈T .

2.2 Exponential Discounting Rationalizability

The objective function faced by an exponential discounting (ED) consumer at time

τ ∈ T is given by

Uτ (cτ , ..., cT−τ ) = u(cτ ) +
T−τ∑
j=1

δju(cτ+j),

where u(·) is the instantaneous utility function and δ ∈ (0, 1] is the discount factor.

Moreover, consumption satisfies the linear budget constraint

ρ′
tct + sdt = ydt + adt ∀t ∈ {τ, . . . , T},

where sdt denotes discounted savings, ydt > 0 denotes discounted income and at is

the discounted value of assets held at period t.4 The assets evolve according to

the law of motion: at = (1 + rt)st−1. A data set is consistent with exponential

discounting if it can be thought of as stemming from the model.

Definition 1. A data set {(ρt, ct)}t∈T is ED-rationalizable if there exist a locally

nonsatiated, continuous, monotonic, and concave instantaneous utility function

u(·), an income stream (ydt )t∈T ∈ R|T |
++, an initial asset level a0 ≥ 0, and a discount

factor δ ∈ (0, 1] such that the consumption stream (ct)t∈T solves

max
(ct)t∈T ∈RL×|T |

+

u(c0) +
T∑
t=1

δtu(ct) s.t. ρ′
0c0 +

T∑
t=1

ρ′
tct = y0 +

T∑
t=1

ydt + a0.

3The interest rate in the first period is set to zero, that is, r0 = 0.
4That is, sdt = st/

∏t
i=0(1 + ri), y

d
t = yt/

∏t
i=0(1 + ri) and adt = at/

∏t
i=0(1 + ri).
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Consistent with the permanent income hypothesis, I assume that the marginal

utility of discounted expenditure is constant across time (Bewley, 1977; Browning,

1989). This is motivated by the fact that, if the marginal utility of discounted

expenditure at t was higher than at s ̸= t, then the consumer could move income

from s to t such as to increase his consumption at t and be better off. The following

result provides a novel representation of the exponential discounting model.

Theorem 1. The following statements are equivalent:

(i) The data set {(ρt, ct)}t∈T is ED-rationalizable.

(ii) There exist a locally nonsatiated, continuous, monotonic and concave instan-

taneous utility function u(·) and a discount factor δ ∈ (0, 1] such that for all

t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′
tct ≥ u(c) − δ−tρ′

tc.

The representation in Theorem 1 (ii) has two distinctive features. First, there is

no budget constraint. Second, the consumer problem is much simpler as it only

requires solving for optimal consumption bundles rather than the whole consump-

tion stream. To interpret the condition in Theorem 1 (ii), it is useful to rewrite

it as

ct ∈ arg max
c∈RL

+

u(c) + δ−t(ydt − ρ′
tc) ∀t ∈ T .

This formulation emphasizes that exponential discounting can be seen as a

repeated static utility maximization problem. Letting sd := ydt − ρ′
tc denote

savings and U(c, sd) := u(c) + δ−tsd, the objective function can be interpreted

as an augmented utility function U : RL
+ × R → R.5 It indicates that, in any

given time period, the consumer values both current consumption and savings.

This compromise between current consumption and savings captures the idea that

increasing consumption today leaves a lesser amount of wealth for future periods,

thus diminishing future consumption. In the absence of a budget constraint, the

mechanism by which an interior solution is achieved therefore relies on the trade-off

between the two.

5See Deb et al. (2023) for a different use of an augmented utility function.
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2.3 Exponential Discounting Rationalizability under Par-

tial Efficiency

Using the novel representation of the exponential discounting model, I follow the

revealed preference literature and relax its constraints with an efficiency level

e ∈ (0, 1].

Definition 2. Let e ∈ (0, 1]. The e-ED model rationalizes the data {(ρt, ct)}t∈T
if there exist a locally nonsatiated, continuous, monotonic and concave utility

function u(·) and a discount factor δ ∈ (0, 1] such that for all t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′
tct ≥ u(c) − δ−tρ′

tc/e.

This definition accounts for digressions from exponential discounting by con-

sidering an efficiency level e that rationalizes every choice of a consumer at once.6

In particular, note that any consumption behavior may be rationalized by the

e-ED model for an e arbitrarily close to zero. The following result extends the

analysis of exponential discounting to account for optimization errors.

Proposition 1. For a given e ∈ (0, 1], the following statements are equivalent:

(i) There exist a locally nonsatiated, continuous, monotonic and concave utility

function u(·) and a discount factor δ ∈ (0, 1] e-ED rationalizing the data

{(ρt, ct)}t∈T .

(ii) There exist numbers ut, t = 0, . . . , T, and a discount factor δ ∈ (0, 1] such

that

us ≤ ut + δ−tρ′
t(cs/e− ct) ∀s, t ∈ T .

Conditional on (e, δ) ∈ (0, 1]2, the existence of a solution can be checked by

solving the set of inequalities in Proposition 1 (ii) using linear programming. One

can recover nonparametric bounds on the discount factor by finding the set of

all discount factors consistent with these inequalities at a given e ∈ (0, 1]. Note

that a data set that needs a small efficiency level to be e-ED rationalizable is

farther away from exponential discounting than one with a large efficiency level.

In particular, if e = 1 then the data set is ED-rationalizable.

6Alternatively, one could have an efficiency index for each choice as in Varian (1990), and
then consider some aggregator function (Dziewulski, 2020) to determine the overall level of
inefficiency.
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2.4 Exponential Efficiency Index

As with the critical cost efficiency index (CCEI) proposed by Afriat (1973), one

can consider the largest efficiency level rationalizing the data for the exponential

discounting model. Formally, I define the exponential efficiency index as

EEI := sup{e ∈ [0, 1] : {(ρt, ct)}t∈T is e-ED rationalizable}.

The EEI provides a measure of distance between a data set and the expo-

nential discounting model. However, it does not differentiate between deviations

arising from within-period consistency (GARP) and time consistency.7 To disen-

tangle sources of departure from exponential discounting, an efficiency measure

that controls for violations of static utility maximization is needed. I call such an

efficiency measure the time consistency efficiency index (TCEI).

The TCEI can be derived based on the 2-step rationalization procedure of

Heufer and Hjertstrand (2019) for homothetic rationalizability. The first stage

consists in finding the largest efficiency level rationalizing the data with respect

to static utility maximization and yields

us ≤ ut + λtρ
′
t(cs/CCEI − ct) ∀s, t ∈ T .

Imposing the additional restriction of the exponential discounting model to the

CCEI-Afriat inequalities amounts to setting λt = δ−t and yields

us ≤ ut + δ−tρ′
t(cs/CCEI − ct) ∀s, t ∈ T .

The TCEI then corresponds to the largest efficiency level rationalizing the previous

system of inequalities with respect to the e-ED model:

us ≤ ut + δ−tρ′
t

( cs
CCEI · TCEI

− ct

)
∀s, t ∈ T .

Since the largest efficiency level that solves the e-ED model is the EEI, it follows

that EEI = CCEI · TCEI. One can therefore recover the TCEI by first obtaining

the CCEI and the EEI.

7The Generalized Axiom of Revealed Preference (GARP) is equivalent to the model of static
utility maximization and is implied by exponential discounting (Browning, 1989).
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3 Empirical Application

3.1 Data

In my empirical analysis, I implement the methodology developed in the previous

sections using the Stanford Basket Dataset, which is a panel data set containing

expenditures of 494 households between June 1991 and June 1993.8 Specifically, I

use the transformed data set of Echenique, Lee and Shum (2011). As such, goods

for which prices are observed in every week are retained and aggregated by brand

for periods of four weeks. This yields a total of 375 distinct goods belonging to

one of the following 14 categories: bacon, barbecue sauce, butter, cereal, coffee,

crackers, eggs, ice cream, nuts, analgesics, pizza, snacks, sugar and yogurt. As

the data do not contain information on interest rates, I include interest rates on

personal loans at commercial banks from the Federal Reserve Bank of St. Louis.9

For a comprehensive description of the scanner data set, I refer the reader to

Echenique, Lee and Shum (2011).

3.2 Results

In what follows, I first compute the efficiency indices for static utility maximization

(CCEI), time consistency (TCEI), and exponential discounting (EEI). I let µe

denote the mean, σe denote the standard deviation, e denote the smallest value of

the efficiency index, and e denote the largest value off the efficiency index. The

results presented in Table 1 are obtained with a grid search over δ ∈ (0, 1] with

a step size of 0.01 and a binary search algorithm for the efficiency indices that

guarantees them to be within 2−10 of their true values.

Table 1: Rationalizability Results

Efficiency index N e e µe σe

CCEI 494 0.6865 1.0000 0.9551 0.0502

TCEI 494 0.4758 1.0000 0.8365 0.0802

EEI 494 0.3878 0.9561 0.7984 0.0820

8I treat households as unitary entities even though they may have many members. As such,
I refer to a household as an individual.

9Since the data on interest rates are quarterly, I use a linear interpolation to obtain monthly
observations.
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Notes: The sample size is N = 494. e denotes the lowest efficiency index, e the largest
efficiency index, µe the average efficiency index, and σe the standard deviation of the
efficiency index.

The results in Table 1 indicate that time consistency is a more stringent as-

sumption than GARP, with an average efficiency level for the TCEI below that of

the CCEI by approximately 0.10.

Next, I use the EEI to recover nonparametric bounds on each individual dis-

count factor. The greatest lower bound and least upper bound on the discount

factor define the identified set (IS). Summary results are presented in Table 2

using a grid search over δ ∈ (0, 1] with a step size of 0.001. For ease of exposition,

summary statistics on the discount factor use the midpoint of the identified set.

Table 2: Nonparametric Bounds on Discount Factors

Efficiency index N IS IS µIS σIS δ δ µδ σδ

EEI 494 0.000 0.013 0.005 0.003 0.837 0.924 0.877 0.007

Notes: The sample size is N = 494. IS denote the smallest size of the identified set,
IS the largest size of the identified set, µIS the average size of the identified set, and
σIS the standard deviation of the identified set’s size. Discount factors are defined as
the midpoint of the identified set. δ denotes the lowest discount factor, δ the largest
discount factor, µδ the average discount factor, and σδ the standard deviation of the
discount factor.

The first four columns of Table 2 show that bounds on the discount factor are

very informative in spite of their nonparametric nature. The last four columns

further show that the discount factor, defined as the midpoint of the identified

set, is about 0.877 on average in the data.

4 Conclusion

In this paper, I recognize that deviations from exponential discounting may natu-

rally arise due to small optimization or measurement errors. My results allow one

to assess the extent of departure from the exponential discounting model and to

determine if utility maximization or time consistency is at fault. More broadly,

the revealed preference inequalities derived in this study could be used to bound

a consumer’s response to a change in prices. The methodology could therefore be

used to do robust welfare analysis, estimate market power in empirical industrial

organization, or determine optimal pricing schemes in marketing.
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Appendix

Proof of Theorem 1

(i) =⇒ (ii)

From the first-order condition, we have

∇u(ct) ≤ δ−tρt ∀t ∈ T ,

where ∇u(ct) is some supergradient of u(·) at ct. By continuity and concavity of

the instantaneous utility function, we know that for all t ∈ T and c ∈ RL
+

u(c) ≤ u(ct) + ∇u(ct)
′(c− ct).

Let N be a set of indices such that ∇u(ct)j = δ−tρt,j for all j ∈ N . It follows

that ∇u(ct)j ≤ δ−tρt,j for all j /∈ N . Thus, ct,j = 0 is a corner solution for all

j /∈ N . We therefore have

u(c) − u(ct) ≤ ∇u(ct)
′(c− ct) =

∑
j∈N

∇u(ct)j(cj − ct,j) +
∑
j /∈N

∇u(ct)j(cj − ct,j)

=
∑
j∈N

δ−tρt,j(cj − ct,j) +
∑
j /∈N

∇u(ct)j(cj − ct,j)

≤
∑
j∈N

δ−tρt,j(cj − ct,j) +
∑
j /∈N

δ−tρt,j(cj − ct,j),

where the last inequality holds since ct,j = 0 and cj ≥ 0 for all j /∈ N . As a result,

for all t ∈ T and c ∈ RL
+

u(c) ≤ u(ct) + δ−tρ′
t(c− ct).

Rearranging gives that for all t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′
tct ≥ u(c) − δ−tρ′

tc,

where, by assumption, the instantaneous utility function is locally nonsatiated,

continuous, monotonic, and concave and δ ∈ (0, 1].

(ii) =⇒ (i)

The instantaneous utility function is locally nonsatiated, continuous, monotonic,

and concave and the discount factor satisfies δ ∈ (0, 1]. For all t ∈ T and c ∈ RL
+,
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we also have

u(ct) − δ−tρ′
tct ≥ u(c) − δ−tρ′

tc.

Rearranging gives that for all t ∈ T and c ∈ RL
+

u(c) ≤ u(ct) + δ−tρ′
t(c− ct).

This inequality corresponds to the definition of concavity and, therefore, it follows

that δ−tρt is a supergradient of u(·) at ct for all t ∈ T .

Proof of Proposition 1

(i) =⇒ (ii)

Since the data set {(ρt, ct)}t∈T is e-ED rationalizable, it is the case that for all

t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′
tct ≥ u(c) − δ−tρ′

tc/e

for some δ ∈ (0, 1]. By the same argument as in the proof of Theorem 1 (ii), we

can obtain

u(cs) ≤ u(ct) + δ−tρ′
t(cs/e− ct) ∀s, t ∈ T ,

where one may define ut := u(ct) for all t ∈ T .

(ii) =⇒ (i)

Consider any sequence of indices τ = {ti}mi=1, ti ∈ T , m ≥ 2, and let I be the set

of all such indices. Summing up the inequalities for the resulting cycle yields

0 ≤ δ−t1ρ′
t1

(ct2/e− ct1) + . . . + δ−tmρ′
tm(ct1/e− ctm).

For some e ∈ (0, 1], define

u(c) = inf
τ∈I

{
δ−τ(m)ρ′

τ(m)

(
c/e− cτ(m)

)
+

m−1∑
i=1

δ−τ(i)ρ′
τ(i)

(
cτ(i+1)/e− cτ(i)

)}
.

This utility function is locally nonsatiated, continuous, monotonic and concave

as it is the pointwise minimum of a collection of affine functions. Moreover, the

infimum defining u(c) has no cycle of indices. Consider c ∈ RL
+ such that c ̸= ct
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and let τt ∈ I be a minimizing sequence for ct. It follows that

u(c) − δ−tρ′
tc/e ≤ δ−tρ′

t

(
c/e− ct

)
+ δ−τt(mt)ρ′

τt(mt)

(
ct/e− cτt(mt)

)
+

mt−1∑
i=1

δ−τt(i)ρ′
τt(i)

(
cτt(i+1)/e− cτt(i)

)
− δ−tρ′

tc/e

= δ−τt(mt)ρ′
τt(mt)

(
ct/e− cτt(mt)

)
+

mt−1∑
i=1

δ−τt(i)ρ′
τt(i)

(
cτt(i+1)/e− cτt(i)

)
− δ−tρ′

tct

= u(ct) − δ−tρ′
tct,

where the first inequality holds since u(c) uses the sequence achieving the infimum

for c, the first equality is a mere simplification, and the last equality is a conse-

quence of τt being a minimizing sequence for ct. Thus, I have shown the existence

of a locally nonsatiated, continuous, monotonic and concave utility function and

a discount factor δ ∈ (0, 1] that e-ED rationalize the data.
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