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Abstract

This paper provides a new identification result for a large class of consumer

problems using a revealed preference approach. I show that the utility max-

imization hypothesis nonparametrically identifies production functions via re-

strictions from the first-order conditions. In addition, I derive a nonparametric

characterization of the class of models that operationalizes the identification

strategy. Finally, I use a novel and easy-to-apply inference method for the es-

timation of the production functions. This method can be used to statistically

test the model, can deal with any type of latent variables (e.g., measurement

error), and can be combined with standard exclusion restrictions. Using data

on shopping expenditures from the Nielsen Homescan Dataset, I show that a

doubling of shopping intensity decreases prices paid by about 15%. At the same

time, I find that search costs more than double within the support of the data,

hence largely diminishing net benefits of price search.

1 Introduction

This paper is concerned with what can be learned about production functions that arise

in consumer problems. These functions are ubiquitous in economic analyses such as in

models of price search, household production, human capital, and general equilibrium.

The estimation of these functions often relies on parametric restrictions or exogenous

variation whose identifying assumption is untestable. In this paper, I show that the
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structure of the consumer problem is sufficient to nonparametrically identify the part

of the production functions that relates to the consumer preferences. I propose an

estimation strategy based on revealed preferences that can be used to test and estimate

the model. The approach is exemplified in an application to price search using household

expenditures data.

The key insight of my identification strategy is to note that the consumer problem

provides a link between preferences and production via the first-order conditions. I

show that the consumer preferences are uniquely nonparametrically identified in a wide

class of models provided there is sufficient variation in budget sets when the sample size

grows. This result uses a revealed preference argument initially proposed by Mas-Colell

(1978). My contribution is to show that, once preferences are identified, cross-equation

restrictions from the first-order conditions of the consumer problem nonparametrically

identify the production functions.

The identification of preferences has first been investigated by Mas-Colell (1977,

1978) in consumer problems with linear budgets when one observes the demand function

or an increasingly large set of demands, respectively. The analysis has been extended

to nonlinear budgets by Forges and Minelli (2009) when the demand correspondence is

fully observed. More recently, there has been an effort to derive identification results

when the choice correspondence is not fully observed, a situation referred to as partial

observability.1 In that direction, Gorno (2019) extends results from Mas-Colell (1977) to

general choice problems and Chambers, Echenique and Lambert (2021) extends results

from Mas-Colell (1978) in the case of binary choice problems.2 Due to the range of

problems considered in this paper, my identification result applies when there is a unique

solution to each choice situation faced by the consumer.

The careful reader will note that my identification result shares similarities with

Gandhi, Navarro and Rivers (2020) in that I exploit the nonparametric link between

production functions and first-order conditions.3 My approach otherwise differs due to

specific challenges arising in consumer problems. First, monotone transformations of the

utility function may impact production functions even though preferences remain un-

changed. Second, the consumer preferences are unknown such that first-order conditions

are not immediately useful to identify the production functions. My main innovation is

to unify insights from distinct fields to derive a new identification result that applies to

production functions in consumer problems.

The second contribution of this paper is to provide a nonparametric characterization

1This terminology follows Chambers, Echenique and Shmaya (2014) and is explained therein.
2Related work on the identification of preferences includes Kübler and Polemarchakis (2017) in a

dynamic model of consumption with assets and uncertainty and Kübler, Malhotra and Polemarchakis
(2020) in finite data with an application to aggregate demand.

3Gandhi, Navarro and Rivers (2020) show that using the full structure of the firm problem resolves
the lack of identification in the widespread proxy variable approach developed by Olley and Pakes (1996)
and refined by Levinsohn and Petrin (2003), Wooldridge (2009), and Ackerberg, Caves and Frazer (2015).
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of a large class of models that operationalizes the identification strategy. The character-

ization gives testable restrictions that are equivalent to the well-known Strong Axiom

of Revealed Preference (SARP) when the solution is unique. Since SARP exhausts the

empirical content of the model, the restrictions use all of the information entailed by

the consumer preferences and the first-order conditions. Thus, inference retains the full

identification power underlying the identification strategy.

The previous characterization is rooted in the revealed preference tradition (Afriat,

1967; Diewert, 1973; Varian, 1982; Browning, 1989). The treatment of nonlinear budget

sets builds on Matzkin (1991) and, more specifically, Forges and Minelli (2009).4 I extend

their results by allowing for multiple constraints and by relaxing the monotonicity of

preferences. This allows me to cover a wide range of models such as models of price

search where the utility function is typically decreasing in search intensity. Although the

extension of Afriat (1967) to many nonlinear constraints was first analyzed by Chavas

and Cox (1993), my results use distinct arguments that may be of interest.5

The methodology I employ for the estimation of the production functions is that

of Schennach (2014). This is motivated by a result due to Aguiar and Kashaev (2021)

that shows how to impose shape constraints without increasing the dimensionality of

the problem. I propose a different implementation than Aguiar and Kashaev (2021) due

to the wide variety of models encompassed by my results.6 The method of Schennach

(2014) also allows me to statistically test the model and thus check the plausibility of

modelling assumptions. Finally, it can be applied in partially identified models without

additional complications.7

My approach combines revealed preference and nonparametric econometrics to derive

identification results and make inference on objects of interest. In a similar fashion,

Blundell, Browning and Crawford (2008) use SARP to improve demand responses to

price changes, Blundell et al. (2015) use SARP to obtain nonparametric bounds on

welfare measures, Cherchye et al. (2015a) use a weaker version of SARP to bound the

sharing rule in a collective model, and Deb et al. (2018) bound the welfare implications of

a price change via analogous revealed preference restrictions.8 The estimation strategy

put forward in this paper may also be useful for such endeavors.

Another application of my approach is to mitigate certain issues with instrumental

variables (IV). The main requirement of IV is the availability of an instrument that only

4In a different direction, Nishimura, Ok and Quah (2017) extend the revealed preference analysis to
a diverse set of choice environments.

5For example, Theorem 3 of this paper is analogous to Proposition 1 of Chavas and Cox (1993) but
uses the concavity of the utility function rather than restrictions on saddle points.

6Specifically, I use a rejection sampling algorithm that can be applied in models defined by linear or
nonlinear constraints indiscriminately, including combinations thereof.

7Other methods in the literature includes Chernozhukov, Hong and Tamer (2007) and Andrews and
Soares (2010).

8Other work include Blundell, Horowitz and Parey (2012) and Blundell, Kristensen and Matzkin
(2014), among others.
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affects the outcome of interest through its impact on the treatment. Unfortunately, it is

often difficult to know a priori whether an instrument satisfy this exogeneity condition.

Moreover, exogeneity is not always testable when the endogenous variable is continuous

(Gunsilius, 2020).9 Since instrumental variable is often used within the framework of

a model, it is without loss of generality to exploit the structure of the model to obtain

(joint) testable restrictions.

The third contribution of this paper is to apply the estimation strategy to a model

of price search that allows for unrestricted heterogeneity in preferences. Price search

describes the process whereby buyers actively seek to gauge the most favorable prices.

Its importance has been recognized at least since the seminal paper of Stigler (1961) and

has gained strong empirical support over the years.10 In an influential paper, Aguiar

and Hurst (2007) show that price search partially explains the retirement-consumption

puzzle.11 My application provides new insights regarding the validity of price search,

recovers the robust impacts of search on prices paid, and quantifies the size of search

costs.

My empirical analysis uses the Nielsen Homescan Dataset which is a data set that

tracks U.S. households’ food purchases on each of their trips to a wide variety of retail

outlets. I measure shopping intensity by the number of shopping trips as it captures

price variations across stores and price discounts found by frequently visiting stores. The

panel structure of the data enables me to set identify the elasticity of price with respect to

shopping intensity from individual time-variation in shopping intensity. Furthermore,

the link between the utility function and the price function given by the first-order

conditions allows me to recover search costs.

In a validation study of the Nielsen Homescan Dataset, Einav, Leibtag and Nevo

(2010) report severe measurement error in prices and provide information about its

structure. The presence of measurement error requires special attention for two rea-

sons. First, the model could be compatible with the true data but incompatible with

the observed data, hence leading to the erroneous rejection of the model.12 Second,

measurement error can complicate empirical analyses by obscuring the true behavior of

variables such as expenditure.13 In turn, this can bias estimators in unpredictable ways.

For example, measurement error may be nonclassical such that bias could arise even if

it appears on the dependent variable in a standard regression setting.

9It is useful to note that overidentifying restrictions do not allow one to test instrument validity. See,
for example, Parente and Silva (2012).

10See, for example, Sorensen (2000), Brown and Goolsbee (2002), and McKenzie, Schargrodsky and
Cruces (2011)

11The retirement-consumption puzzle was dubbed due to the observed drop in expenditures occurring
around retirement that contradicts the life-cycle hypothesis.

12Measurement error has been shown to reverse conclusions about the validity of exponential dis-
counting in single-individual households (Aguiar and Kashaev, 2021).

13See Attanasio and Pistaferri (2016) for an overview of how measurement error can cloud the evolution
of consumption inequality.
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My application formalizes the empirical evidence documenting (i) the effects of price

search on prices paid (Aguiar and Hurst, 2007), (ii) the use of price search as a mech-

anism to mitigate adverse income shocks (McKenzie, Schargrodsky and Cruces, 2011;

Nevo and Wong, 2019), and (iii) the wide heterogeneity in prices paid (Kaplan and Men-

zio, 2015; Kaplan et al., 2019; Hitsch, Hortacsu and Lin, 2019). Additionally, by testing

the main assumptions on which the price search literature relies, I provide a foundation

for existing models of price search (Aguiar and Hurst, 2007; Pytka, 2017; Arslan, Guler

and Taskin, 2021).

While I find support for price search behavior in single households, I reject the

model in multi-person households.14 The latter is likely caused by the implicit assump-

tion that multi-person households behave as a single decision maker. Indeed, there is

solid evidence against it in the literature (see e.g., Thomas, 1990, Fortin and Lacroix,

1997, Browning and Chiappori, 1998, and Cherchye and Vermeulen, 2008). As such,

this finding provides evidence that the current methodology is successful at detecting

erroneous assumptions. Furthermore, it reiterates the importance of recognizing the

collective nature of households, including in models of price search.

Using data on single households, the 95% confidence set on the expected elasticity

of price with respect to shopping intensity states that a doubling of shopping intensity

decreases the price paid by about 15%. My confidence set is consistent with the estimates

of Aguiar and Hurst (2007) obtained using an instrumental variable approach.15 This

suggests that the exogeneity requirement of their instruments are fulfilled, and that

measurement error does not significantly bias their estimates.

The structure of the model further allows me to recover search costs incurred by the

consumer. I find that the 95% confidence set on the expected logarithm of search costs

is between 1.75 and 4.75 over the support of the data. That is, the expected search cost

at the observed number of shopping trips is between 175 to 475 percent larger than the

expected search cost with no search. The expected total search cost represents at most

43% to 120% of the consumer expenditure.

The rest of the paper is organized as follows. Section 2 defines the class of problems

covered by the results. Section 3 presents the identification result. Section 4 presents

the estimation strategy. Section 5 introduces the model of price search considered in

my application. Section 6 describes the data set. Section 7 details the empirical results.

Section 8 concludes. The main proofs can be found in Appendix A5.

14The term single household refers to households with a single individual in them.
15It also rationalizes the calibration of Arslan, Guler and Taskin (2021) used in a different model of

price search.

5



2 Class of Problems

This section defines the notation used throughout the paper, the class of problems under

study, and the identified set.

2.1 Environment

Let N = {1, . . . , N}, Lk = {1, . . . , Lk}, Z = {1, . . . , Z}, and T = {1, . . . , T} denote

consumers, goods related to production that enter the utility function, goods related

to production that do not enter the utility function, and periods for which data are

observable, respectively. The index k ∈ K = {1, . . . ,K} refers to the constraint in the

consumer problem such that Lk gives the number of variables related to production in

constraint k. The sets Lk are mutually exclusive and, for convenience, I let L =
⋃

k∈K Lk

and L =
∑

k L
k.16

An observation for a consumer i ∈ N is (F k
i,t, c

k
i,t,a

k
i,t, zi,t)k∈K ⊆ RL

++×RL
++×RL

++×
RZ , where the variable F is the observed output, the variable c differs from a in that

a enters in some production function while c does not, and the variable z differs from

a in that a enters in the utility function while z does not.17 The production functions

F k
i,l : RLk

++ × RZ × RLk

++ → R++ are absolutely continuous and have no variables in

common. A data set for consumer i is denoted xi := {(F k
i,t, c

k
i,t,a

k
i,t, zi,t)}k∈K,t∈T .

Let u : C × A ⊆ RL
++ × RL

++ → R be a locally nonsatiated, pointwise monotonic,

and continuous utility function. A utility function is pointwise monotonic if it is either

increasing or decreasing in l for each l ∈ L.18 Define the set of all such utility functions

by U . Let I denote the set of characteristics defining the consumer preferences. From

the econometrician point of view, a consumer has preferences represented by a random

utility function ui : I → U , where consumers are assumed to be i.i.d. draws from I.

2.2 The Consumer Problem

The class of problems considered in this paper is that of a set of a consumer behaving

as if maximizing the following problem in every period t ∈ T :

max
(c,a)∈C×A

ui(c,a) s.t. F̃ k
i (a

k, zi,t,ω
k
i,t)

′Gk(ck) ≤ 0 k = 1, . . . ,K, (1)

where F k
i,l,t := F̃ k

i,l(a
k
i,t, zi,t,ω

k
i,t) and Gk is a vector of continuously differentiable func-

tions Gk
l : Ck ⊆ RLk

++ → R.19 It is assumed that constraints hold with equality at the

observed data such that F̃ k
i (a

k
i,t, zi,t,ω

k
i,t)

′Gk(cki,t) = 0. Moreover, it is assumed that

16That is, Lk ⋂Lk′
= ∅ for all k ̸= k′ ∈ K.

17I use bold font to denote vectors and follow the convention that vectors are vector columns.
18This allows the utility function to be increasing in some goods and decreasing in others.
19Similarly, we have Ak ⊆ RLk

++.
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the functions Gk(ck) are known such that the model is specified. For concreteness, note

that the standard consumer problem corresponds to K = 1, Fi(ai,t, zi,t,ωi,t) = Ft, and

G(ci,t) = ci,t, where Ft is interpreted as prices and ci,t is interpreted as consumption.20

Example 1. (Price Search) Consider a model of price search similar to Aguiar and

Hurst (2007) with a utility function u(c, a) increasing in consumption (c), decreasing

in search intensity (a), and concave. The budget constraint is F (a, z, ω)′c = y, where

F (a, z, ω) is a log-linear price function decreasing in search intensity, z are variables

affecting prices paid such as shopping needs, and y is income.

Example 2. (Household Production) Consider a model of household production similar

to Benhabib, Rogerson and Wright (1991) with a utility function given by u(cm, ch, am, ah)

= log(cm + ch) + α log(1− am + ah), where cm is the market good, ch is the homemade

good, am is the time spent working, ah is the time spent working home, and α > 0 is

the value of leisure. Suppose the household can use am and ah to obtain market and

homemade goods, i.e. cm = wam and ch = F (ah, ωh), where w is the wage and ωh is the

household productivity from home working.

Example 3. (Limited Attention) Consider a model of bounded rationality similar to

Gabaix (2014). The consumer misperceives prices such that F (a) = ap+(1−a)pd, where

F is the perceived price, a ∈ [0, 1] is the degree of attention, p is the actual price and pd

is the default price (e.g., average price). The budget constraint is given by F (a)c ≤ y,

where c is consumption and y is income. The cost of attention is captured in reduced

form through the utility function such that u(c, a) is increasing in c and decreasing in a.

Example 4. (Human Capital) Consider a model of human capital similar to Ben-Porath

(1967). The consumer maximizes discounted utility flows
∑T

t=1 δ
(t−1)u(ct, 1−a1,t−a2,t),

where δ is the discount factor, a1,t is hours worked, and a2,t is human capital investment.

Human capital evolves according to zt+1 = (1− d)zt + F (a2,t, zt, ω), where zt is human

capital, d ∈ (0, 1] is depreciation, and ω is learning ability. The consumer budget is∑T
t=1 ct ≤

∑T
t=1wzta1,t, where w is the wage.

Example 5. (General Equilibrium) Consider a general equilibrium model of consump-

tion and labor choice. The firm maximizes profit pF (a1, a2) − ra1 − wa2, where p is

the price of the output, a1 is capital, a2 is labor, r is the marginal return of capital,

and w is the marginal return of labor. A representative consumer has a utility function

u(c, l − a2), where c is consumption and 1 − a2 is leisure. The budget constraint is

c = F (a1, a2).

20A constant such as income can always be included in the model.
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2.3 Identified Set

For the sake of generality, suppose that some variables are mismeasured and let x∗i

denote the true data. Furthermore, let θ denote the (possibly infinite) parameters of

the production functions. Let the identified set be defined by

ΘI(xi) := {θ : x∗i solves (1) for some ui ∈ U} .

In words, the identified set contains every set of parameters for which the true data

set can be thought of as solutions of the consumer problem (1) for some well-behaved

preferences. The production functions are said to be point identified if the identified

set is single-valued such that ΘI(xi) = {θ0}, where θ0 is the set of parameters of

the true production functions. The next section provides general conditions for point

identification that may serve as a benchmark, where identification is assumed to arise

from N → ∞.

3 Identification

This section introduces concepts and establishes conditions that are necessary for the

point identification of the production functions. The estimation strategy proposed in

the next section covers both point and set identification.

3.1 Point Identification

The first condition for point identification is that there be no measurement error in the

data.

Assumption 1. For all i ∈ N , xi = x∗i .

This assumption is quite common and necessary in the general setting considered

here. That said, it is possible to achieve point identification in some models given a

particular structure of measurement error. This is the case, for example, with exogenous

additive measurement error in the dependent variable in a log-linear regression.21

The next assumption requires that the error term ωi,t be multiplicatively separable.

Assumption 2. For all k ∈ K and l ∈ Lk, the following holds:

F̃ k
i,l(a

k
i,t, zi,t,ω

k
i,t) = F k

i,l(a
k
i,t, zi,t)H

k
l (ω

k
i,t). (2)

The separable structure of the error term includes Hicks-neutrality that is widely

used in the production function literature. A special case covered by this assumption is

21In that case, identification is obtained for the model parameters. More generally, see Wang (2021)
for an overview of identification in models with measurement error.
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the Cobb-Douglas technology. Therefore, a common empirical specification covered by

Assumption 2 is the log-linear regression. Also, note that while F k
i is time-invariant, it

can depend on variables that capture time effects. For example, the production function

could have age or experience as variables zi,t.

The next restriction is for the functions Gk
i to be nonconstant functions of c.

Assumption 3. For all k ∈ K and l ∈ Lk,
∂Gk

l (c
k)

∂cl
̸= 0.

Assumption 3 requires that for any good l ∈ L, there is at least one variable cl unrelated
to production. This assumption guarantees that the production function is invariant to

monotone transformations of the utility function. That is, it ensures that identification

only depends on preferences, not the arbitrary representation of those preferences. If

Assumption 3 only holds for a subset of goods, then only the part of the production

function associated with that subset of goods is identified.

Next, I define a notion of revealed preference for the class of models considered.

Definition 1. For any t ∈ T , a bundle (ci,t,ai,t) is said to be revealed preferred to

a bundle (c,a) if Mk
i,t(c

k,ak) =
(
F k
i (a

k, zi,t) ⊙ Hk(ωk
i,t)
)′
Gk(ck) −

(
F k
i (a

k
i,t, zi,t) ⊙

Hk(ωk
i,t)
)′
Gk(cki,t) ≤ 0 for all k ∈ K. If the inequality is strict for some k ∈ K, then

(ci,t,ai,t) is said to be strictly revealed preferred to (c,a).

The next notion called the Strong Axiom of Revealed Preference (SARP) requires

the revealed preference relation to be acyclic.

Definition 2. (SARP) If (ci,t,ai,t) is revealed preferred to (ci,s,ai,s), then (ci,s,ai,s) is

not revealed preferred to (ci,t,ai,t) unless (ci,s,ai,s) = (ci,t,ai,t).

The SARP is a ubiquitous consistency condition in revealed preference analysis that is

necessary and sufficient for a data set to be thought of as arising from the maximization

of a utility function.22 This condition is a slight strengthening of the Generalized Axiom

of Revealed Preference (GARP) that rules out the consumer problem to have multiple

solutions. The next assumption requires the data set (xi)i∈N to be rational.

Assumption 4. The random data set (xi)i∈N satisfies SARP.

A necessary condition for Asssumption 4 to hold is that each individual data set

xi satisfies SARP. In the case where preferences are of the Gorman form (Gorman,

1959), the data (xi)i∈N can be treated as that of a representative consumer. Note

that point identification is no longer guaranteed if Assumption 4 is relaxed to GARP.

This is because indifference between multiple alternatives hinders one’s ability to infer a

consumer preferences. Indeed, indifference allows one to rationalize any choice pattern

as the outcome of coin flips.

22In the next section, I show that SARP is indeed a necessary and sufficient condition for the consumer
to pertain to the class of models considered in this paper.
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Let Bk
i :=

{
(ck,ak) ∈ Ck ×Ak :

(
F k
i (a

k, zi,t)⊙Hk(ωk
i,t)
)′

Gk(ck) ≤ 0

}
denote a

budget set for constraint k ∈ K and Bk the set of all budget sets Bk
i . The budget sets

are assumed to be comprehensive.23 Let βk
1 = Bk

1 , β
k
2 = Bk

1

⋃
Bk

2 , . . . , β
k
N =

⋃N
i=1B

k
i .

The next assumption requires variation in budget sets to become rich enough when the

sample size grows.

Assumption 5. lim
N→∞

⋃N
i=1 β

k
i = Bk for all k ∈ K.

Intuitively, budget variation is necessary as it allows one to learn how the consumer

ranks alternatives against each other. Once preferences are identified, the first-order

conditions provide nonparametric cross-equation restrictions that can be used to identify

the production functions. Hence, the following result obtains.

Theorem 1. Under Assumptions 1-5, E[F k(ak
t , zt)] is nonparametrically identified up

to a function of zt for all k ∈ K.

This theorem states that one can point identify the part of the production function

that enters preferences in the population in a reasonably large class of problems. The

level of variation needed for point identification can always be attained, at least in

principle, when the sample becomes large enough.24 The next assumption allows one to

strengthen Theorem 1.

Assumption 6. E[hk(ωk
t )|zt] = 0, where hk(ωk

t ) := log
(
Hk(ωk

t )
)
.

Assumption 6 amounts to conditional mean independence as assumed in ordinary

least squares (OLS). To fix ideas, one can think of zi,t as a discrete variable such as gender

zi,t ∈ {Male,Female}. Assumption 6 requires that the expected error term be the same

in either group. As with OLS, this assumption is reasonable if the econometrician is

able to include enough variables zt such as to avoid endogeneity issues.

The equality to zero is a normalization such that the only requirement is for the

expectation to be invariant with respect to zt. In particular, note that the error may be

correlated with ai,t. This is because additional information from the consumer problem

is used to identify that part of the production functions. Finally, it is worth noting that

Assumption 6 is testable. The following result states that the entire production function

is identified when Assumption 6 holds.

Theorem 2. Under Assumptions 1-6, E[F k(ak
t , zt)] is nonparametrically identified up

to scale for all k ∈ K.

23For concreteness, assume that ck enters positively in the utility function and that ak enters nega-
tively. Then, a budget Bk is said to be comprehensive if ∀(ck,ak) ∈ Ck ×Ak, if ∃(c̃k, ãk) ∈ Bk, ck ≤ c̃k

and ak ≥ ãk, then (ck,ak) ∈ Bk.
24In practice, it may be harder to achieve a dense set of budgets for larger class of budget sets in finite

samples.
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The first appeal of the identification results presented in this paper is to show that

the part of the production function that enters preferences is identified and shielded

from endogeneity issues. Thus, if one is only interested in that part of the production

function there is no need for exogenous variation. That said, the part of the production

function that is unrelated to preferences is subject to the same caveats as OLS. If one is

interested in that part of the production function, it may be necessary to use standard

exclusion restrictions to achieve point identification.

The second appeal of my results is to show that the structure of the consumer

problem contains meaningful identification power. In particular, the restrictions implied

by the model may still give useful information about the production functions even when

point identification is not achieved. That is, the above assumptions give a benchmark

for identification but are not necessary for informative inference. As such, the estimation

strategy proposed in the next section provides a practical approach for the estimation

of production functions that is applicable in both point and partially identified models.

Remark. In the case where T → ∞, point identification is obtained under much weaker

requirements. Indeed, SARP would only need to hold on individual data sets. Further-

more, one would then be able to point identify individual production functions (up to a

function of zi,t without Assumption 6). Thus, while the previous results do not require

access to panel data, the panel structure provides additional identification power that

should be exploited when available.

4 Estimation Strategy

In this section, I propose an estimation strategy that operationalizes the identification

results. To this end, I derive nonparametric restrictions that exhaust the empirical

content entailed by the consumer preferences. I then show how the model can be cast

into a set of moment conditions susceptible to statistical inference. The methodology is

applicable both in point and partially identified models.

4.1 Shape Restrictions from Preferences

In what follows, it will be useful to be precise about what it means for a data set to be

rationalized by a utility function.

Definition 3. A utility function ui : C × A → R rationalizes the data xi if, for all

(ci,t,ai,t) and (c,a), Mk
t (c

k,ak) ≤ 0 for all k ∈ K implies ui(ci,t,ai,t) ≥ ui(c,a) and, if

the inequality is strict for some k ∈ K, then ui(ci,t,ai,t) > ui(c,a).

This definition states that bundles that allow greater production or that are more

“expensive” give a higher utility level. The previous section showed that one of the
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main substantive condition for identification is that the data set (xi)i∈N satisfies SARP.

The following result shows that rationalizability is equivalent to SARP when the utility

maximization problem yields a unique solution.25

Proposition 1. For a given data set xi, the following are equivalent:

(i) The data set is rationalized by a locally nonsatiated and continuous utility function

that yields a unique maximizer.

(ii) The data set satisfies SARP.

It is often reasonable and desirable to assume that the utility function is concave.

The following result relates rationalizability by a concave utility function and conditions

that can be checked in the data. Let ⊙ denote the Hadamard product.

Theorem 3. Let xi be a given data set. The statements (i) and (ii) below are related

in the following ways: if (i) then (ii), and if the budgets (Bk
i,t)k∈K,t∈T are convex then

(ii) implies (i).

(i) The data set is rationalized by a locally nonsatiated, continuous, pointwise mono-

tonic, and concave utility function.

(ii) There exist numbers ui,t, λ
k
i,t > 0, Ḟ k

i,l,t, and ωi,l,t such that, for all s, t ∈ T , the

following system of inequalities is satisfied

ui,s ≤ ui,t +
∑
k

λk
i,t

[ (
F k
i,t ⊙∇cG

k
i (c

k
i,t)
)′

(cki,s − cki,t)

+
(
Ḟ k
i,t ⊙Hk(ωk

i,t)⊙Gk(cki,t)
)′

(ak
i,s − ak

i,t)
]
,

where Ḟ k
i,l,t ≥ 0 if the utility function is increasing in al,t and Ḟ k

i,l,t ≤ 0 otherwise.

The set of inequalities in Theorem 3 (ii) captures the concavity of the utility function,

where the numbers ui,t and λk
i,t > 0 can be thought of as utility numbers and marginal

utilities of “expenditure”. The sign of Ḟ k
i,l,t captures the monotonicity of the utility

function with respect to aki,l,t and depends on the application.

Theorem 3 states that any data set rationalized by the model must satisfy Theorem

3 (ii) if the utility function is concave. Moreover, any data set that satisfies Theorem 3

(ii) is rationalized by the model if the budget sets are convex. In that case, Proposition

1 guarantees that the data set is consistent with SARP. Hence, these inequalities provide

an operational way to use the empirical content lying in the consumer preferences for

estimation purposes.

25Although the result is stated for an individual data set xi, it also applies on (xi)i∈N since the latter
can be viewed as the data set of a representative consumer.
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In practice, there are many solutions to the inequalities in Theorem 3 (ii). These

solutions are observationally equivalent in the sense that the data do not allow one to

distinguish one from another. As a consequence, the set of solutions in Theorem 3 (ii)

directly relates to the identified set.

Corollary 1. If the inequalities in Theorem 3 (ii) are only necessary for the data to be

rationalized by the model, then

ΘI(xi) ⊂ {θ : xi satisfies Theorem 3 (ii)} .

If the budget sets (Bk
i,t)k∈K,t∈T are convex, then the inequalities in Theorem 3 (ii) are

also sufficient for the data to be rationalized by the model and

ΘI(xi) = {θ : xi satisfies Theorem 3 (ii)} .

Corollary 1 states that conservative bounds on the identified set can always be re-

covered via Theorem 3 (ii). Moreover, these bounds are sharp whenever the budget sets

are convex.

4.2 Characterization via Moment Functions

Let X := RL
++×C×A and E|X be the support of the latent random variables conditional

on X . Moreover, let xi ∈ X denote the observed random data and ei ∈ E|X denote the

latent random variables.

For all l ∈ L, s, t ∈ T , and k ∈ K, the class of models defined by Assumption 1-5 is

captured by the following moment functions:

gui,s,t,k(xi, ei) := 1

(
ui,s − ui,t −

∑
k

λk
i,t

[ (
F k
i,t ⊙∇cG

k
i (c

k
i,t)
)′

(cki,s − cki,t)

+
(
ρk
i,t ⊙Hk(ωk

i,t)⊙Gk(cki,t)
)′

(ak
i,s − ak

i,t) ≤ 0
])

− 1,

gωi,l,t,k(xi, ei) := hkl (ω
k
i,t),

where the first set of functions characterizes the concavity of the utility function and the

last set of functions characterizes the normalization of the error term. The latent random

variables further satisfy their support constraints: λk
i,t > 0 and ρk

i,t ≤ (≥) 0. Note that

a given model may have additional moment functions on the production functions, error

term, or measurement error as exemplified in the empirical application.

Let gi(xi, ei) := (gu
i (xi, ei)

′, gω
i (xi, ei)

′)′ denote the set of moments functions that

characterize the model. Furthermore, let du and dω denote their respective number of

constraints. Arbitrary combinations of these sets of functions are denoted with their
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superscripts bundled together. For example, gu,ω
i (xi, ei) is the set of functions on the

utility function and the error term. Note that the moment functions gi(xi, ei) depend

on unobservables. As such, the latent variables have to be drawn from some distribution

for the moment functions to be evaluated.

4.3 Statistical Rationalizability

Let MX , ME,X , and ME|X denote the set of all probability measures defined over X ,

(E ,X ), and E|X , respectively. Moreover, let Eµ×π[gi(xi, ei)] :=
∫
X
∫
E|X gi(xi, ei) dµ dπ,

where µ ∈ ME|X and π ∈ MX . The moment functions previously defined allow me to

define the statistical rationalizability of a data set.26

Definition 4. A random data set x := {xi}Ni=1 is statistically rationalizable if

inf
µ∈ME|X

∥Eµ×π0 [gi(xi, ei)]∥ = 0,

where π0 ∈ MX is the observed distribution of x.

That is, the data are statistically rationalizable if there exists a distribution of the

latent random variables conditional on the data such that the expected moment functions

are satisfied. In practice, searching over the set of all conditional distributions represents

a daunting task. Fortunately, the following result shows that the problem can be greatly

simplified without loss of generality.27

Theorem 4. The following are equivalent:

(i) A random data set x is statistically rationalizable.

(ii) min
γ∈Rdω

∥Eπ0 [h̃i(xi;γ)]∥ = 0,

where

h̃i(xi;γ) :=

∫
ei∈E|X gω

i (xi, ei) exp(γ
′gω

i (xi, ei))1(g
u
i (xi, ei) = 0) dη(ei|xi)∫

ei∈E|X exp(γ ′gω
i (xi, ei))1(g

u
i (xi, ei) = 0) dη(ei|xi)

,

and where η(·|xi) is an arbitrary user-specified distribution function supported on E|X
such that Eπ0 [log(Eη[exp(γ

′gω
i (xi, ei))|xi])] exists and is twice continuously differentiable

in γ for all γ ∈ Rdω .

Proof. See Theorem 2.1 in Schennach (2014) and Theorem 4 in Aguiar and Kashaev

(2021).

26This definition follows the notion of identified set in Schennach (2014).
27See Aguiar and Kashaev (2021) for the weak technical assumptions required for this result to hold.
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In words, Theorem 4 (ii) averages out the unobservables in gi(xi, ei) according to

some conditional distribution.28 The particularity of η(·|xi) is to preserve the set of

values that the objective function can take before the latent variables have been averaged

out. As such, any minimum achieved under η(·|xi) can also be achieved under µ. The

dimensionality of the problem is then further reduced by noting that the concavity of

the utility function only restricts the conditional support of the unobservables. Thus,

one can draw from the conditional distribution η̃(·|xi) := 1(gu
i (xi, ·) = 0)η(·|xi) rather

than leaving the moment functions gu
i (xi, ·) in the optimization problem.29

In most applications, the distribution η̃(·|xi) may be taken to be proportional to a

normal distribution:

dη̃(·|xi) ∝ exp
(
−||gω

i (xi, ei)||2
)
,

where the value of the mean and variance are inconsequential for the validity of the

result. To draw from this distribution, the first step is to obtain latent variables that

satisfy the moment functions gu
i (xi, ei) and can be achieved by rejection sampling. Then,

a standard Metropolis-Hastings algorithm can be used to draw from the distribution.

4.4 Statistical Inference

The notion of statistical rationalizability together with Theorem 4 provides a feasible

way of checking whether the data are consistent with the model. To statistically test

the model in a data set, let

ˆ̃
h(γ) :=

1

N

N∑
i=1

h̃i(xi,γ)

and

ˆ̃Ω(γ) :=
1

N

N∑
i=1

h̃i(xi,γ)h̃i(xi,γ)
′ − ˆ̃

hi(γ)
ˆ̃
hi(γ)

′

denote the sample analogues of h̃ and its variance, respectively. Furthermore, let ˆ̃Ω−

denote the generalized inverse of the matrix ˆ̃Ω. Schennach (2014) shows that the test

statistic

TSN := N inf
γ∈Rdω

ˆ̃
h(γ)′ ˆ̃Ω−(γ)

ˆ̃
h(γ)

is stochastically bounded by a χ2 distribution with dω degrees of freedom (χ2
dω
).30 As

such, the rationalizability of a data set can be checked by comparing the value of the

test statistic against the critical value of the chi-square distribution with dω degrees of

28Schennach (2014) shows the existence of an admissible conditional distribution η(·|xi) and gives a
generic construction for it.

29Parametric restrictions on the production functions also only restrict the support of the latent
variables as they hold almost surely.

30Aguiar and Kashaev (2021) further show that the test has an asymptotic power equal to one.
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freedom. Inference can be made by adding moments on the parameters of interest:

r(xi, ei;θ) = θ0,

where r(·) is some function that may depend on the data xi and latent variables ei. As

before, this condition can be encapsulated in moment functions:

gθi (xi, ei) := r(xi, ei;θ)− θ0,

where θ may be thought of as parameters of the production functions. A conservative

95% confidence set on θ0 can be obtained by inverting the test statistic:

{θ0 : TSN (θ0) ≤ χ2
dω+1,0.95},

where TSN (θ0) is the test statistic at a fixed value of θ0.

5 Application to Price Search

This section considers a flexible model of price search as a means to clarify how the

methodology proposed in this paper may be used in practice as well as to show the

feasibility and effectiveness of the approach.

5.1 Model

The consumer is assumed to know her realizations of search productivity (ω) and to

choose consumption (c) and shopping intensity (a) accordingly. Formally, a consumer

behaves as if maximizing her utility function subject to satisfying her budget constraint:

max
(ci,ai)∈CT×AT

ui(ci,t,ai,t) + yi s.t. pi(ai,t,ωi,t)
′ci,t = yi, (3)

where ui : C × A → R is a utility function that is continuous, concave, strictly in-

creasing in consumption, and decreasing in shopping intensity, pi(a,ωi,t) is a vector of

continuously differentiable good-specific price functions pi,l : RL
++ × RL → R++ where

pi,t := pi(ai,t,ωi,t), and yi is income. The econometrician only observes the data set

xi := {(pi,t, ci,t,ai,t)}t∈T .
The model has two distinctive features. First, the consumer gets utility from con-

sumption and disutility from shopping intensity. The latter captures the opportunity

cost of time such as foregone earnings and leisure. Second, the consumer can pay lower

prices by shopping more frequently. The extent by which shopping intensity reduces

prices paid depends on the consumer ability to take advantage of sales and other deals

such as coupons. The consumer problem boils down to finding the optimal trade-off
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between utility from consumption and disutility from shopping intensity.

This trade-off is illustrated in Figure 1 in the case where there is one good L = {1}
and one time period T = {1}. The consumer has to choose a bundle that lies within

her budget set Bi := {(c,a) ∈ C × A : pi(a,ωi)
′c ≤ yi}. This set is represented by the

shaded area in Figure 1. The affordable bundle that maximizes the consumer utility is

(ci, ai). At this point, the indifference curve ICi is tangent to the budget line, hence

corresponding to the unique maximizer.31

−3

O

1

2

a

c

Indifference Curve

Budget Set

Search (a)

Consumption (c)

Figure 1: Optimal Choice with Price Search

It is important to note that the quasilinearity assumption could be relaxed in the

model.32 The assumption is motivated by the fact that the data span a period of

six months for which changes in income are negligible in my empirical application.

Moreover, the data focus on food consumption which tends to be income inelastic.33

Since quasilinearity is reasonable in this particular data set, it will be useful to impose

it in my application. This is because the quasilinear structure provides a useful measure

of utility in terms of dollar, hence allowing me to get insights on search costs.

31In Appendix A1, I show that my model can be extended to home production and relates it to that
of Aguiar and Hurst (2007).

32For example, static utility maximization would be more appropriate if the data set spanned a few
years such that income varied over time.

33Quasilinearity is also used by Echenique, Lee and Shum (2011) and Allen and Rehbeck (2020) in a
similar scanner data set on food expenditures.
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5.2 Environment

Given the fundamental unobservability of preferences, it is preferable that assumptions

on the utility function remain minimal. On the contrary, the production functions are

partially observed. Indeed, one has data on prices paid for many values of shopping

intensity. As such, one should feel comfortable making more stringent assumptions on

the latter.

To gain insights on the behavior of the price functions, Figure 2 displays how log

prices averaged across consumers (henceforth, expected prices) vary with log number of

shopping trips in the data, where shopping trips capture shopping intensity.
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Figure 2: Average Log Price by Log Number of Shopping Trips

Note: The vertical axis reports the average log price, where the average is taken across consumers.

Consistent with the price search hypothesis, Figure 2 shows a negative relationship

between prices paid and shopping intensity. Moreover, we can see that the change

in expected log prices as log shopping trips increase can be approximated by a linear

function. Accordingly, I follow the price search literature and assume that the price

functions are log-linear in shopping intensity.34

Assumption 7. For all l ∈ L, the log price function is given by

log(pi,l(ai,l,t, ωi,l,t)) = α0
i,l + α1

i,l log(ai,l,t)− ωi,l,t,

where α0
i,l ∈ R denotes the intercept and α1

i,l ≤ 0 denotes the elasticity of price with

34See, for example, Aguiar and Hurst (2007) and Arslan, Guler and Taskin (2021).
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respect to shopping intensity.

Assumption 7 implies that prices paid decrease at a decreasing rate as shopping in-

tensity or search productivity increases. This requirement captures decreasing marginal

returns that arise due to the increasing difficulty of finding discounts surpassing the

current best discount.35 An example of budget set generated by a log-linear price func-

tion is illustrated in Figure 1 in the case of a single good. The figure shows that the

marginal increase in consumption from lower prices paid decreases as shopping intensity

increases.

Conditional on the log-linear specification implied by Assumption 7, price functions

are otherwise free to vary across goods and consumers. This heterogeneity is important

as goods may not be subject to the same discounts and consumers may not have access

to the same set of stores. Furthermore, note that the price function for any good l ∈ L
only depends on the shopping intensity on that good. This precludes complementarities

that may naturally arise, for instance, if two goods are in a same aisle in a store. This

issue is largely mitigated in my application as goods are aggregated to coarse categories.

A look at Figure 2 shows that a log-linear relationship does not hold perfectly for any

given good. These deviations are normal in any data set and accounted for by search

productivity (ωi,l) in the price functions. It is possible that some consumers that go on

many shopping trips may do so because they do not find satisfactory discounts. This

could explain the uptick in prices paid for larger values of shopping trips on frozen foods

and packaged meat. Alternatively, those upticks could reflect the purchase of higher

quality goods on those shopping trips. That is, consumers that go on more shopping

trips may also purchase more expensive goods.

Although the log-linear relationship is imperfect for any given good, Figure 2 shows

that it fits well across goods. That is, one is able to fit a line almost perfectly by

averaging expected log prices across goods. Given Assumption 7, this implies that the

expected average search productivity is time-invariant. In other words, the unobserved

effects of search productivity on prices paid cancel out on average.

Assumption 8. For all t ∈ T , E [ωt] = 0, where ωi,t := L−1
∑L

l=1 ωi,l,t denotes the

average search productivity across goods.

Assumption 8 allows search productivity to vary for each individual and each good

as long as the overall search productivity remains constant.36 Permitting search produc-

tivity for a particular good to change over time is important in my application because

of the coarse aggregation of the data. Indeed, since a consumer may purchase differ-

35Stigler (1961) shows that the expected value of the minimum price is convex in search, therefore
providing a theoretical motivation for this choice.

36The equality of the expected average search productivity to zero is a normalization and is thus
without loss of generality.
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ent baskets of goods in different time periods, prices may vary due to variations in the

composition of the baskets of goods.

Other than for this mild centering condition, Assumption 8 is quite general as it does

not presume anything about the underlying stochastic process of search productivity.

Conditional on the expected average search productivity being time-invariant, it allows

individual-specific search productivity to vary arbitrarily with both observables and

unobservables. In particular, it includes Markovian processes often assumed in the

production function literature.37

Given the log-linearity of the price functions, Assumption 8 implies that expected

log prices should be around the mean, conditional on shopping trips. In accordance with

this prediction, Figure 3 shows that the distribution of expected log prices is centered

around its mean. I report the unconditional distribution for expositional purposes;

similar shapes are obtained for the conditional ones.38
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Figure 3: Distribution of Average Log Prices

Another reason why the data may not exhibit a perfect log-linear relationship is the

presence of measurement error. Indeed, Einav, Leibtag and Nevo (2010) use transactions

from a large retailer in order to document the extent of measurement error in the Nielsen

Homescan Dataset on which Figure 2 is derived. They show that measurement error in

prices is severe and document that the difference between observed log prices and true

37See, for example, Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg, Caves and Frazer
(2015), and Gandhi, Navarro and Rivers (2020).

38Consistent with Assumption 7, distributions conditioned on larger values of shopping trips tend to
be centered around lower values of log prices.
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log prices is zero.39 This leads to the following assumption.

Assumption 9. For all l ∈ L and t ∈ T , the following moment condition holds:

E [log(pl,t)] = E
[
log(p∗l,t)

]
.

Assumption 9 says that, in expectation, observed log prices and true log prices are

the same for each good and time period. Together, they yield a total of L · T moments

on measurement error.

Lastly, I bound the support of the elasticity of price with respect to shopping intensity

to gain further identification power.

Assumption 10. For all l ∈ L, α1
i,l ∈ [−1, 0].

Assumption 10 constrains the elasticity of price with respect to shopping intensity

to be in [−1, 0] for every good l ∈ L. In comparison, Aguiar and Hurst (2007) obtain

a point-estimate of −0.074 for the elasticity of price with respect to shopping intensity

using the Homescan 1993-1995.40 As such, Assumption 10 should give enough flexibility

for the needs of the data.

Under the previous assumptions, the concavity of the utility function and the log-

linear price functions can be refuted by the data. Intuitively, to see why price search

is refutable, note that Assumptions 7-8 imply that the average expected log price paid

must decrease whenever shopping intensity increases. Therefore, inconsistencies with

price search arise whenever this relationship is violated in the data.41

5.3 Price Search Rationalizability

The environment defined in the previous section implies that for all l ∈ L and s, t ∈ T ,

the model is characterized by the following moment functions:

gui,s,t(xi, ei) := 1
(
ui,s − ui,t −

[
p∗′
i,t(ci,s − ci,t)− ρ′

i,t(ai,s − ai,t)
]
≤ 0
)
− 1,

gpi,l,t(xi, ei) := 1
(
log
(
p∗i,l,t

)
−
(
α0
i,l + α1

i,l log(ai,l,t)− ωi,l,t

)
= 0
)
− 1,

gmi,l,t(xi, ei) := log(pi,l,t)− log
(
p∗i,l,t

)
,

gωi,t(xi, ei) := ωi,t,

where the first set of functions characterizes the concavity of the utility function, the

second the log-linearity of the price functions, the third measurement error, and the

last search productivity. The latent random variables satisfy their support constraints:

39Additional details about the data and measurement error are given in Section 6.
40Their estimate is obtained using an instrumental variable approach and is for a single aggregated

good.
41See Appendix A2 for analytical power results.
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α1
i ∈ [−1, 0], ρi,t ≤ 0 and p∗

i,t > 0, where ρi,l,t further satisfies

ρi,l,t = α0
i,lα

1
i,la

α1
i,l−1

i,l,t e−ωi,l,tci,l,t ∀l ∈ L.

This equality constraint implies that ρi,t is completely determined by the data and

latent variables (ui,t,αi,ωi,t,mi,t)t∈T . Every consumer has a total of T 2 + L · T +

L · T + T moment functions, written as gi(xi, ei) := (gu
i (xi, ei)

′, gp
i (xi, ei)

′, gm
i (xi, ei)

′,

gω
i (xi, ei)

′)′ for short. Arbitrary combinations of these sets of functions are denoted with

their superscripts bundled together. For example, gm,ω
i (xi, ei) is the set of functions on

measurement error and search productivity.

The moment functions allow me to define the statistical rationalizability of a data

set with respect to the model of price search.

Definition 5. Under Assumptions 7-10, a random data set x := {xi}Ni=1 is price search

rationalizable (PS-rationalizable) if

inf
µ∈ME|X

∥Eµ×π0 [gi(xi, ei)]∥ = 0,

where π0 ∈ MX is the observed distribution of x.

Conditional on the data being consistent with PS-rationalizability, the next step is

to make inference on parameters of interest. First, I show that inference on the true

expected elasticity of price with respect to shopping intensity is possible in the model.

Proposition 2. The true expected elasticity of price with respect to shopping intensity

is given by

E

[
∂ log(p∗t )

∂ log(at)

]
=

1

L
E
[
α1
]
,

where the line over
∂ log(p∗t )
∂ log(at)

and α1 denote the average across goods.

Proposition 2 states that the expected effect of an increase in shopping intensity on the

price paid can be recovered from data on prices and search intensity. The reason why

it can be achieved in the model is that Assumption 8 restricts the expected (average)

search productivity to be time-invariant. Therefore, any variation in expected prices

must be caused exclusively by variations in shopping intensity.

Next, I show that the true expected search cost can be recovered.

Proposition 3. The true expected search cost is given by

E

T−1L−1
∑
l,t

u(ct,at)− u(ct,a−l,t, 1l,t)

 = E
[
(pl(al,t, ωl,t)− pl(1, ωl,t)) cl,t

]
,
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where a−l,t denote the shopping intensity on every good but good l, 1l,t denote the shop-

ping intensity on good l in period t, and the line over (pl(al,t, ωl,t)− pl(1, ωl,t)) cl,t denote

the average across goods and time periods.

In words, Proposition 3 states that the expected disutility of shopping is equal to the

expected savings from search. Note that the quasilinear structure of the utility function

allows me to interpret the disutility of search in dollars. Additional details about the

implementation are given in Appendix A3.

Remark. Measurement error implicitly accommodates various shocks that may occur

outside the model. For example, changes in prices induced by supply shocks would be

absorbed by the moments on measurement error provided they satisfy Assumption 9.

Likewise, exogenous shocks can be absorbed by search productivity provided they satisfy

Assumption 8. Accordingly, the model is robust to a variety of perturbations.

6 Data

This section presents the data set used in my empirical application and discusses its

main source of measurement error.

6.1 Sample Construction

For my empirical application, I use the Nielsen Homescan Dataset 2011 (henceforth

referred to as the Homescan). This data set contains information on purchases made by

a panel of U.S. households in a large variety of retail outlets. The data set is designed

to be representative of the U.S. population based on a wide range of annually updated

demographic characteristics including age, sex, race, education, and income.

Participating households are provided with a scanner device and instructed to record

all of their purchases after each shopping trip. The scanner device first requires partici-

pants to specify the date and store associated with each trip. Then, they are prompted

to enter the number of units bought. When an item is purchased at a store with point-

of-sale data, the average weighted price of the item in that week and store is directly

given to Nielsen and recorded as the price paid prior to any coupon. Otherwise, panelists

enter the price paid prior to any deal or coupon using the scanner device. In either case,

panelists record the amount saved from coupons and the final price paid is the recorded

price paid minus coupon discounts.

The Homescan contains information on Universal Product Codes (UPC) belonging to

one of 10 departments. In order to mitigate issues associated with stockpiling, I restrict

my attention to the following four food departments: dry grocery, frozen foods, dairy,

and packaged meat.42 This selection leaves over a million distinct UPCs representing

42This choice implicitly assumes that food is weakly separable from other categories of goods. This
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about 40% of all products in the Homescan. For each household, I also aggregate the

data to monthly observations to further reduce stockpiling issues. The resulting UPC

prices are calculated as the average UPC prices weighted by quantities purchased.

To obtain regular observations on each good, I aggregate UPCs to their department

categories, yielding a total of four “goods”. Since the number of moments increases

multiplicatively with the number of goods in my application, this level of aggregation will

also ensure that the optimization problem remains tractable. The resulting aggregated

prices are calculated as the average UPC prices weighted by quantities purchased. Even

with this layer of aggregation, some households do not have purchases from each category

of goods in every month. Since the model requires price observations in every time

period, I discard those households from the analysis.43

The data set focuses on households that satisfy the above criteria, participated in the

Homescan from April to September of the panel year 2011, and whose head household

is at least 50 years old such as to exclude potential online shoppers. The final sample

contains X consumers, 4 aggregated goods, and 6 monthly time periods. Additional

details about the construction of the data set are provided in Appendix A4.

6.2 Measurement Error

The data collection process employed by Nielsen may induce measurement error for three

reasons. First, conditional on a shopping trip, entry mistakes may arise as panelists

self-report their purchases. Second, when a consumer purchases a UPC at a store that

provides Nielsen with point-of-sale data, the price reported (before coupons) is the

weighted average price during that week in that particular store. Thus, the reported

price will be different from the price paid if the store changes the price during the week.

Third, some consumers have loyalty cards whose discounts are not incorporated into the

final price paid.

In a validation study of the Homescan 2004, Einav, Leibtag and Nevo (2010) use

transactions from a large retailer in order to document the extent of measurement error.

Consistent with the above observations, they find that price is the variable most severely

hit by measurement error. Specifically, they find that around 50% of prices are accurately

recorded. In contrast, around 90% of UPCs are accurately recorded by panelists on

average. This number increases to 99% conditional on the quantity being equal to one.

Accordingly, I focus exclusively on measurement error in prices in my application.

Since prices are mismeasured, observed prices (pi,t)t∈T are different from true prices

paid by the consumer (p∗
i,t)t∈T . Let the difference between their logarithms define

assumption is empirically plausible (Cherchye et al., 2015b), especially when the presence of measurement
error is recognized (Fleissig and Whitney, 2008; Elger and Jones, 2008).

43This also avoids imputing prices of zero consumption goods that would overlook the full heterogeneity
in prices assumed in the model.
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measurement error: mi,t := log(pi,t)− log(p∗
i,t) for all t ∈ T .44 Using price data from a

large retailer, Einav, Leibtag and Nevo (2010) show that the difference between observed

and true log prices is centered around zero in the Homescan 2004. Formally, one cannot

reject that the difference in sample means of log prices is zero at the 95% confidence

level. As Nielsen’s method of data collection has not changed since their study, I take

their finding as support for mean zero measurement error in log prices in the Homescan

2011.

7 Empirical Results

In this section, I check whether the data are PS-rationalizable, estimate the shopping

technology across multiple demographics, and relate price search to consumption in-

equality.

7.1 Price Search Rationalizability

By applying the above methodology to the data, I find that PS-rationalizability is not

rejected by the data at the 95% confidence level among single households. More precisely,

I obtain a test statistic of 36.38, which is below the chi-square critical value of 43.77. In

contrast, I find that PS-rationalizability is rejected by the data in couple households as

well as for households of many members.45

The rejection of the model in multi-person households is to be expected given the

assumption that they behave as a single entity that maximizes a single utility function.

Indeed, there is mounting evidence in the literature that multi-person households do not

make choices as a single decision maker.46 That is, the methodology successfully detects

modelling assumptions that are inconsistent with the data. This is a desirable outcome

as one of the methodology’s goals is to alleviate the odds to inadvertently undergo an

empirical analysis suffering from misspecification issues.

7.2 Empirical Results

Since the model is not rejected by the data on single households, I can invert the

statistical test to obtain a 95% confidence set on the expected elasticity of price with

respect to shopping intensity. Doing so, I obtain a confidence set of [−0.2,−0.1]. Thus,

a doubling of shopping intensity decreases prices paid by about 15% on average.

Despite the important role of price search in reducing expenditures, it only provides

one side of the story. Indeed, it does not account for the shadow utility cost of searching.

44This definition makes no assumption on the way measurement error arises. For example, measure-
ment error could be additive or multiplicative and be correlated across goods or time periods.

45The test statistic is 443.38 and X, respectively.
46See, for example, Thomas (1990), Fortin and Lacroix (1997), Browning and Chiappori (1998),

Cherchye and Vermeulen (2008), Cherchye, Demuynck and De Rock (2011), and Cherchye et al. (2020).

25



Thus, I next report the log expected search cost such as to recover the percentage increase

in search costs over the support of the data.47 Since log search costs are not defined

when equal to zero, which happens when the number of shopping trips equals one, I

remove such observations when computing the confidence set.48 At this point, it is

useful to note that consumers going on few shopping trips are likely to have high search

costs. Therefore, removing these observations may create a slight downward bias in the

expected log search cost.

Using data on single households, I find that the 95% confidence set on the absolute

value of expected log search cost is [1.75, 4.75]. In other words, consumers search costs

increase by about 175% to 475% within the support of the data.

Lastly, the 95% confidence set on the expected marginal search cost (in dollar) is

[−1.25,−3.5] at the optimum. Since search costs are weakly increasing in shopping

intensity, multiplying the expected marginal search cost at the optimum by the average

number of shopping trips gives an upper bound on the expected total search cost. Doing

so, I obtain that the expected total search cost is at most 18.5 to 51.8 dollars, or 43 to

120 percent of the observed average expenditure.

7.3 Discussion

In this study, I find that a doubling of shopping trips decreases prices paid by about

15% on average. It is worthwhile to note that my confidence set covers the estimate

of Aguiar and Hurst (2007) obtained using an instrumental variable approach.49 This

suggests that the quasilinearity assumption made in the model is reasonable in the

data. Similarly, the compatibility of their results with mine provides further evidence

that the exogeneity assumption underlying the identification strategy in Aguiar and

Hurst (2007) is satisfied, and that measurement error does not create sizable bias in

their methodology.50

When consumers differ in their price search, it induces heterogeneity in prices paid.

In turn, this implies that expenditure gives an erroneous account of consumption under

the assumption that prices paid are homogeneous. Building on this insight, Arslan,

Guler and Taskin (2021) show that consumption inequality is significantly smaller than

expenditure inequality using data from the Homescan 2004. My results show that the

monetary savings from price search are partially offset by the utility cost of searching.

Thus, one should also recognize the disutility incurred from search to obtain a complete

47The log expected search cost is better disciplined than search cost since Assumption 9 imposes
restrictions on log prices.

48About 6.5% of observations have a number of shopping trips equal to one.
49Their estimate of the elasticity of price with respect to shopping intensity is −0.19 using age as an

instrument, −0.07 using either income or household size as an instrument, and −0.10 using all three
instruments simultaneously.

50Recall that measurement error in the dependent variable does not cause bias if measurement error
is classical.
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picture of inequalities.

8 Conclusion

This paper shows that production functions are nonparametrically identified in a large

class of consumer models. This novel result takes advantage of restrictions implied by

utility maximization and cross-equation restrictions from the first-order conditions. I

provide a simple estimation strategy for the estimation of production functions that is

applicable in both point and partially identified models. In my empirical application, I

find that search costs more than double within the support of the data, hence showing

their importance when evaluating the benefits of price search. The quantitative size of

search costs may have implications on within- and between-group inequalities as well as

on the level of competition in a market. I leave this to future work.
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Appendix

A1: Relationship with Models of Household Production

Although the focus of this paper is on the price function, the framework of the model is

consistent with one of household production similar in spirit to that of Becker (1965).

As an illustration, I extend my model to one of household production and shows that it

has close ties with that of Aguiar and Hurst (2007).

Suppose that, in addition to spending time shopping, the household can spend time

in home production denoted by h ∈ R++. By using that time input along with market

goods, the household can produce some homemade good K by using its (concave) home

production function f(h, c).51 The household’s problem therefore becomes

max
(c,a,K,h)∈C×A×R2

++

u(a,K, h) s.t. p(a,ωt)
′c = yt

f(c, h) = K.

One can get rid of the second constraint by substituting it for K in the utility function,

yielding

max
(c,a,h)∈C×A×R++

u(a, f(c, h), h) s.t. p(a,ωt)
′c = yt.

Assuming the opportunity cost of time is additively separable, linear, and identical for

the shopper and the home producer, the problem boils down to

max
(c,a,h)∈C×A×R++

u(f(c, h)) + µ′
ta+ µth s.t. p(a,ωt)

′c = yt,

where µt denotes the disutility from the time spent on either activity. Since both u(·) and
f(·, ·) are unobservable concave functions, this maximization problem is observationally

equivalent to

max
(c,a,h)∈C×A×R++

f(c, h) + µ′
ta+ µth s.t. p(a,ωt)

′c = yt,

and we have thereby recovered a model with the same implications to that of Aguiar

and Hurst (2007).52 To see why, assume the solution is interior and take the first-order

51One can think of market goods as comestible such as eggs, sugar and pecans. By spending h unit of
time cooking, the household can transform these “raw goods” into a pecan pie, the final good consumed
by the household.

52Despite that the two maximization problems are observationally equivalent, eliminating the utility
function changes the interpretation of the model.
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conditions:

∂f

∂c
= λtp(a,ωt)

µ = λt
∂p(a,ωt)

∂a
⊙ c

µ = −∂f

∂h
.

It follows that the marginal rate of transformation (MRT) between time and goods in

shopping equals the MRT in home production:

∂f

∂h
/
∂f

∂cl
= −

∂pl(al,ωl,t)
∂al

· cl
pl(al, ωl,t)

∀l ∈ L.

This derivation shows that the household production version of my model naturally

extends that of Aguiar and Hurst (2007). Conditional on knowing the price function,

this last equation can be used to identify the home production function, a point that

was cleverly exploited by Aguiar and Hurst (2007) in a parametric setting.

A2: Power Analysis

In this section, I show that price search and utility maximization are both refutable

under Assumptions 7-10. I then provide empirical evidence that these additional re-

strictions are not necessary for the model to be rejected by the data.

Convexity of the Log-linear Shopping Technology

Let the price function for any good l ∈ L have the log-linear shopping technology

specified by Assumption 7:

log(pl,t(al,t, ωl,t)) = α0
l + α1

l log(al,t)− ωl,t.

It is easy to see that, for any l ∈ L, the Hessian of the log price function is

H(al,t, ωl,t) =

− α1
l

a2l,t
0

0 0

 .

The principal minors are D1 = − α1
l

a2l,t
≥ 0, D2 = 0, and D3 = 0. Accordingly, the log

price functions are convex and, therefore, the price functions logarithmically convex.53

Falsifiability of Price Search

53A function f is logarithmically convex if the composition of the logarithm with f is itself a convex
function.
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Suppose that Assumptions 7-10 are satisfied and let L = {1, 2}, T = {1, 2}. Almost

surely, let observed prices be such that p1 = [1, 2]′, p2 = [3, 4]′, shopping intensity be

such that a1 = [1, 2]′, a2 = [2, 3]′, and consumption be such that ct > 0 for t = 1, 2.

Convexity of the log price functions implies that for all l ∈ L and s, t ∈ T , we have

log

(
p(al,s, ωl,s)

p(al,t, ωl,t)

)
≥

∇ap(al,t, ωl,t)

p(al,t, ωl,t)
(al,s − al,t) +

∇ωp(al,t, ωl,t)

p(al,t, ωl,t)
(ωl,s − ωl,t).

54

The above expression can be written more concisely as

log

(
p∗l,s
p∗l,t

)
≥

ρl,t
p∗l,tcl,t

(al,s − al,t)− (ωl,s − ωl,t) ∀s, t ∈ T .

Summing up these inequalities for each good l ∈ L and dividing by L gives

1

L

L∑
l=1

log

(
p∗l,s
p∗l,t

)
≥ 1

L

L∑
l=1

ρl,t
p∗l,tcl,t

(al,s − al,t)− (ωs − ωt) ∀s, t ∈ T ,

where ωt :=
1
L

∑L
l=1 ωl,t for all t ∈ T . Taking the expectation for s = 1, t = 2 and using

the assumptions that E[log(pt)] = E[log(p∗
t )] and E[ωt] = 0 for all t ∈ T , we get

0 >
1

L

L∑
l=1

(E [log(pl,1)]− E [log(pl,2)]) ≥ − 1

L

L∑
l=1

E

[
ρl,2

p∗l,2cl,2

]
. (4)

Noting that the random variables on the right-hand side are always negative, it fol-

lows that the negative of their expectations are positive: −E
[

ρl,2
p∗l,2cl,2

]
≥ 0 for all l ∈ L.

Clearly, inequality (4) yields a contradiction. In other words, the data are inconsistent

with the model provided the price functions are log-linear.

Falsifiability of Utility Maximization

Suppose that Assumptions 7-10 are satisfied and let L = {1, 2}, T = {1, 2}. Almost

surely, let observed prices be such that p1 = [1, 2]′, p2 = [3, 4]′, shopping intensity be

such that a1 = [2, 3]′, a2 = [1, 2]′, and consumption be such that c1 = [1, 1]′, c2 = [2, 2]′.

Furthermore, suppose that the discount factor is such that δ = 1 almost surely.

Concavity of the utility function implies that for all s, t ∈ T

u(cs,as)− u(ct,at) ≤ ∇cu(ct,at)
′(cs − ct) +∇au(ct,at)

′(as − at).

Summing up these inequalities for s = 1, t = 2 and s = 2, t = 1, we can obtain

0 ≤
[
(p∗

2 − p∗
1)

′(c1 − c2) + (ρ2 − ρ1)
′(a1 − a2)

]
,

54Note that this expression is well-defined since prices are strictly positive.
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For concavity to be analytically refuted, it is clear that Assumption 9 needs to be

changed to E[pt] = E[p∗
t ] for all t ∈ T . Taking the expectation then yields

0 ≤ (E[p2]− E[p1])
′(c1 − c2) + (E[ρ2]− E[ρ1])

′(a1 − a2)

= −4 +
L∑
l=1

(E[ρl,2]− E[ρl,1])

≤ −4−
L∑
l=1

E[ρl,1]

≤ −4 +
1

2
+

2

3

< 0,

where the first equality substituted the expected value of true prices for their expected

observed values, the second inequality used the assumption that ρt ≤ 0 for all t ∈ T ,

and the third inequality exploited the fact that αl ∈ [−1, 0] for all l ∈ L. Indeed, the

latter allows us to obtain the support of ρ1 since ρl,1 = αl,1 ·
pl,1cl,1
al,1

for all l ∈ L. Picking
αl,1 = −1 yields the third inequality.

Clearly, the previous inequalities yield a contradiction. As such, utility maximiza-

tion can be rejected by the data under Assumptions 7-10 provided E[pt] = E[p∗
t ] for all

t ∈ T (instead of Assumption 9) and δ = 1 almost surely.

Falsifiability of the Model: Empirical Evidence

I have shown analytically that the model defined by Assumptions 7-10 can be rejected

by the data with only two time periods if either (1) the price functions are log-linear,

or (2) the discount factor equals one almost surely and measurement error satisfies

E[pt] = E[p∗
t ] for all t ∈ T .

To complement the above analysis, I now provide empirical evidence that the model

can be rejected by the data under Assumptions 9-10 if the price functions are convex

decreasing.55 This corresponds to the fully nonparametric version of the model. To this

end, I consider a data set where p1 = [1, 2]′, p2 = [3, 4], a1 = [1, 2]′, a2 = [2, 3]′, and

c1 = [1, 4]′, c2 = [3, 2]′. I let the sample size be 500 where, for simplicity, every consumer

is assumed to have the same data set.

The results derived previously do not allow me to conclude that the model has any

empirical content without the log-linearity of the price functions. Nevertheless, an ap-

plication of the methodology to the constructed data set yields a test statistic of 476.98,

well-above the chi-square critical value of 12.59.

55Formally, a function f : RL → R is convex if and only if f(x) ≥ f(y) + ∇′
yf(y)(x − y) for all

x,y ∈ RL. It is convex decreasing if it is convex and ∇f(y) ≤ 0 for all y.
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A3: Implementation

In this section, I provide a pseudo-algorithm of the ELVIS approach proposed by Schen-

nach (2014) specialized to my model. Furthermore, I provide pseudo-algorithms for the

construction of the conditional distribution η̃ and the integration of the latent variables.

Pseudo-Code

Step 1

• Fix the number of goods L and the number of time periods T .

• Fix the data set x = (xi)
N
i=1, where xi = (pi,t, ci,t,ai,t)t∈T .

• Fix the moments defining the model: gu
i , g

p
i , g

m
i , gω.

• Fix the support of the structural parameters: δi ∈ [δ, 1] and α1
i ∈ [−1, 0].

• Fix the conditional distribution of the latent variables η̃.

Step 2

for i = 1 : N

• Integrate the latent variables under η̃(·|xi) to obtain h̃i(xi,γ).

end

• Compute
ˆ̃
h(γ) = 1

N

∑N
i=1 h̃i(xi,γ).

• Compute ˆ̃Ω(γ) = 1
N

∑N
i=1 h̃i(xi,γ)h̃i(xi,γ)

′ − ˆ̃
hi(γ)

ˆ̃
hi(γ)

′.

• Compute the objective function: ObjFct(γ) = N
ˆ̃
h(γ)′ ˆ̃Ω(γ)−

ˆ̃
h(γ).

Step 3

• Compute TSN = minγ ObjFct(γ).

Step 1 (Construction of η̃)

The distribution η̃ can be taken to be proportional to a normal distribution:

dη̃(·|xi) ∝ exp(−||gm,ω
i (xi, ei)||2),

where gm,ω
i is the set of moments on measurement error and search productivity. The

following pseudo-code details how to construct the conditional distribution by using re-

jection sampling and applying Metropolis-Hastings on each passing draw. I draw true
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prices instead of measurement error as it ensures true prices to be strictly positive. Let

R > 0.

while r ≤ R

• Draw candidate latent variables eci = (δi,p
∗
i,t,α

1
i ,ωi,t)t∈T such that their support

constraints are satisfied.

• Given xi and eci , check whether the model is satisfied by using Theorem 3. If the

model is not satisfied, go a step back.

• Draw ζ from U [0, 1]

• If −
(
||gm,ω

i (xi, e
c
i )||2 − ||gm,ω

i (xi, e
r−1
i )||2

)
> log(ζ), set eri to eci . Else, set eri to

er−1
i .

• Set r = r + 1

end

Step 2 (Latent Variable Integration)

• Fix xi, η̃, and γ.

• Set h̃i(xi,γ) = 0

while r ≤ R

• Draw eci proportional to η̃(·|xi).

• Draw ζ from U [0, 1]

• If
[
gm,ω
i (xi, e

c
i )− gm,ω

i (xi, e
r−1
i )

]′
γ > log(ζ), set eri to eci . Else, set e

r
i to er−1

i .

• Compute h̃i(xi,γ) = h̃i(xi,γ) + gm,ω
i (xi, e

r
i )/R

• Set r = r + 1

end

A4: Sample Construction

The Homescan contains information on purchases made by U.S. households in a wide

variety of retail outlets. After every trip to a retail outlet, information about the trip

is recorded by the panelist via a scanner device. Each trip may have one or many UPC

purchases. In total, there are 66, 321, 848 purchases in the panel year 2011. Among
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them, 43, 432, 246 pertain to the departments of dry grocery, frozen foods, dairy and

packaged meat. Since some purchases in the panel year are outside of the calendar year

2011, I remove them from the sample. This operation drops 751, 479 purchases, leaving

a total of 42, 680, 767 purchases.

For each household-month, I average UPC prices across trips. Precisely, for any

household i ∈ N and month t ∈ T , the weighted average price for a given UPC is given

by

pi,UPC,t =

∑
tripsi∈t pi,UPC,tripsici,UPC,tripsi∑

tripsi∈t ci,UPC,tripsi

,

where tripsi denotes a trip of household i. This aggregation is only computed for UPCs

that are purchased by a given household in a given month.

The Homescan has a total of 4, 510, 908 distinct UPCs, with 1, 633, 850 that belong

to the four departments considered: dry grocery, frozen foods, dairy, and packaged

meat. To keep the analysis tractable and mitigate stockpiling issues, I aggregate UPCs

to their department categories. For each household-month, the weighted average price

for a given department l ∈ L is given by

pi,l,t =

∑
UPC∈l p̃i,UPC,tci,UPC,t∑

UPC∈l ci,UPC,t
.

Furthermore, I only keep data from April to September. The main reason for limiting

the number of goods and time periods is to control the computational burden. Since

the number of parameters to solve for in the model is given by L · T + T , the nonlinear

optimization problem becomes quickly intractable when either L or T increases.

As the methodology requires the data to be strictly positive, I drop households that

do not meet this requirement for any aggregated good and month. These conditions

bring down the number of households from 62, 092 to 16, 025. Further limiting the sample

to single households that are at least 50 years old decreases the number of households to

1668. Finally, I drop households that have zero prices paid, thus decreasing the sample

size to 1645.56

I restrict the sample to single households to avoid the false rejection of the model. As

Adams et al. (2014) point out, inconsistencies may arise due to negotiation within a cou-

ple household. Jackson and Yariv (2015) further show that time inconsistent behavior

will appear if individuals in a non-dictatorial household have different discount factors.

By accounting for measurement error in survey data, Aguiar and Kashaev (2021) show

that single households behave consistently with exponential discounting while couple

households do not.

56Zero prices may arise because of “free-good” promotions or if the household enters a price equal to
zero and no historical information regarding a valid price for the UPC is available.
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A5: Proofs

Proof of Theorem 1 and 2

Lemma 1. Under Assumptions 1-6, if the utility function is known up to a monotone

transformation, then E[F (ak
t , zt)] is nonparametrically identified up to scale.

The first-order conditions of the consumer problem (1) with respect to c and a for any

constraint k ∈ K is

∇ckui(ci,t,ai,t)l = λk
i,tF

k
i,l(a

k
i,t, zi,t)H

k
l (ω

k
i,t)

∂Gk
l (c

k
i,t)

∂cki,l,t
(5)

∇akui(ci,t,ai,t)l = λk
i,t

∂F k
i,l(a

k
i,t, zi,t)

∂aki,l,t
Hk

l (ω
k
i,t)G

k
l (c

k
i,t) ∀l ∈ Lk,∀k ∈ K, (6)

where ∇u(ci,t,ai,t) denotes a supergradient of u at the point (ci,t,ai,t) ∈ C × A.57

Dividing (5) by (6) and rearranging yields

∂fk
i,l(a

k
i,t, zi,t)

∂aki,l,t
=

∇aku(ci,t,ai,t)l
∇cku(ci,t,ai,t)l

·
∂gki,l(c

k
i,t)

∂cki,l,t
∀l ∈ Lk,∀k ∈ K, (7)

where fk
i,l := log

(
F k
i,l(a

k
i,t, zi,t)

)
is absolutely continuous and gki,l := log

(
Gk

i,l(c
k
i,t)
)
.58

Since the marginal rate of substitution (MRS) is invariant to monotone transformations

of the utility function, the derivative of the log production function is invariant to such

transformations.

Given knowledge of the utility function up to a monotone transformation, equation

(7) immediately identifies the derivative of the log production function from the data.

Importantly, the left hand side defines a differential equation. Thus, by the fundamental

theorem of calculus and since a is a continuous variable, I can integrate the differential

equation with respect to a for good l of constraint k, thus yielding

∫ aki,l,t

aki,l

∂fk
i,l(a

k
i,−l,t, a,zi,l,t)

∂a
da = fk

i,l(a
k
i,t, zi,l,t) + Ck

i,l(a
k
i,−l,t, zi,l,t) ∀l ∈ L,∀k ∈ K, (8)

where 0 < aki,l < aki,l,t. As Gandhi, Navarro and Rivers (2020) note, the above equations

can be combined to obtain the following equality:

fk
i,l(a

k
i,t, zi,l,t) =

L∑
l=1

∫ aki,l,t

aki,l

∂fk
i,l

(
ak
i,l′≤l,t,a

k
i,l′>l, a,zi,l,t

)
∂a

da

+ Ck
i,l(zi,l,t). (9)

57Let m ∈ N and f : Rm → R be a concave function. A vector g is a supergradient of f at y ∈ Rm if
for every x ∈ Rm it satisfies f(x) ≤ f(y) + g′(x− y).

58This is because the composition of a continuously differentiable function and an absolutely contin-
uous function is absolutely continuous and the fact that log(·) is continuously differentiable on R++.
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Next, subtract equation (9) from fk
i,l,t to get

fk
i,l,t −

L∑
l=1

∫ aki,l,t

aki,l

∂fk
i,l

(
ak
i,l′≤l,t,a

k
i,l′>l, a,zi,l,t

)
∂a

da

 = Ck
i,l(zi,l,t)− hkl (ω

k
i,t), (10)

where hkl (ω
k
i,t) = log

(
Hk

l (ω
k
i,t)
)
. This equation shows that the constant of integration

and the log function of the error term are not separately identified.

Without loss of generality, normalize the latter such that E[hkl (ωk
l,t)] = 0. Taking the

expectation of equation (10) gives E[Ck
l (zi,t)]. Then, differencing equation (10) between

t, t′ ∈ T after expectation identifies the change E[hkl (ωk
t ) − hkl (ω

k
t′)]. Therefore, once

E[hkl (ωk
t )] = 0 is normalized for some t ∈ T , no additional normalization is required.

Finally, taking the expectation of equation (9) and then the exponential function yields

the expected production function up to a function of zt.

To obtain Theorem 2, simply note that by conditioning on zt in equation (10) and

by assuming E[hkl (ωk
l,t)|zt] = 0, the constant of integration is identified since the left-

hand side is a known quantity. Then, only the constant in the constant of integration

changes with the normalization of the error term. Thus, the whole production function

is nonparametrically identified up to scale.

Next, I show that the preferences of a representative consumer are identified under

Assumptions 1-5. First, note that WARP is implied by GARP and that GARP is in fact

SARP once the choice correspondence h : B → C × A is assumed single-valued, where

B :=×k∈K Bk. Second, note that the utility function is continuous and the budget sets

are compact and continuous.59 Thus, by the maximum theorem the choice function h

is continuous. Finally, note that h is trivially closed since it is a function.

Consistent with the assumption that preferences are pointwise monotonic, the choice

function is also assumed pointwise monotonic. The choice function h is pointwise mono-

tonic if, for any k ∈ K, any Bk ∈ Bk, any l ∈ Lk, and any (ckl , a
k
l ) ∈ R2

++, one of the

following is true:

[(ck1,l, a
k
1,l) ∈ h(Bk), ck2,l > ck1,l, a

k
2,l > ak1,l] =⇒ [(ck2,l, a

k
2,l) /∈ Bk] (11)

[(ck1,l, a
k
1,l) ∈ h(Bk), ck2,l > ck1,l, a

k
2,l < ak1,l] =⇒ [(ck2,l, a

k
2,l) /∈ Bk] (12)

[(ck1,l, a
k
1,l) ∈ h(Bk), ck2,l < ck1,l, a

k
2,l > ak1,l] =⇒ [(ck2,l, a

k
2,l) /∈ Bk] (13)

[(ck1,l, a
k
1,l) ∈ h(Bk), ck2,l < ck1,l, a

k
2,l < ak1,l] =⇒ [(ck2,l, a

k
2,l) /∈ Bk]. (14)

This generalization of monotonicity may appear odd and unnecessary at first but it

is in fact quite natural for a choice function to be monotone decreasing for a subset of

59For budget sets that are unbounded, it is without loss of generality to take a finite support that
includes the unique interior solution.
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variables.60 A preference relation ⪰ is pointwise monotonic if, for any k ∈ K and any

l ∈ Lk, one of the following is true:

[ck1,l > ck2,l, a
k
1,l > ak2,l] =⇒ (ck1,l, a

k
1,l) ≻ (ck2,l, a

k
2,l) (15)

[ck1,l > ck2,l, a
k
1,l < ak2,l] =⇒ (ck1,l, a

k
1,l) ≻ (ck2,l, a

k
2,l) (16)

[ck1,l < ck2,l, a
k
1,l > ak2,l] =⇒ (ck1,l, a

k
1,l) ≻ (ck2,l, a

k
2,l) (17)

[ck1,l < ck2,l, a
k
1,l < ak2,l] =⇒ (ck1,l, a

k
1,l) ≻ (ck2,l, a

k
2,l), (18)

where (ck1,l, a
k
1,l) ≻ (ck2,l, a

k
2,l) =⇒ (ck1,l, a

k
1,l) ⪰ (ck2,l, a

k
2,l) and not (ck2,l, a

k
2,l) ⪰ (ck1,l, a

k
1,l).

There are 4L possible instances of pointwise monotonicity, all of which can be defined in

the obvious way. In what follows, I consider pointwise monotonicity as defined in (12)

and (16) for each constraint k ∈ K and good l ∈ Lk as it corresponds to the case in my

empirical application, differs from standard monotonicity (more is better), and remains

notationally tractable.

For convenience, let xkl = (ck1,l, a
k
1,l), y

k
l = (ck2,l, a

k
2,l), x

k, yk ∈ RLk

++ × RLk

++, and x,

y ∈ RL
++ × RL

++ be their stacked versions. Note that choices between two alternatives

x and y can be simulated by the following budget set:

Bx,y = {(c,a) ∈ C × A : c ≤ c1,a ≥ a1} ∪ {(c,a) ∈ C × A : c ≤ c2,a ≥ a2}. (19)

LetRN be the set of continuous and pointwise monotonic preferences that generate h

on βN . Let ⪰h be the preference relation induced by the choice function h. A preference

relation ⪰ generates the choice function h on B if, for all B ∈ B, h(B) = {x ∈ B : [y ∈
B] =⇒ x ⪰ y}. The following result is due to Forges and Minelli (2009).

Lemma 2. If the individual choice correspondence h : B → C ×A has closed values, is

pointwise monotonic, upper hemicontinuous, and satisfies WARP, then ∩NRN = {⪰h}.

The proof is included for completeness.

(1) ⪰h generates h on B. I have to show that for all B ∈ B, h(B) = {x ∈ B : [y ∈
B] =⇒ x ⪰h y}. Let x be an element of the set on the right-hand side. If x /∈ h(B),

then there exists y ∈ B, x ̸= y, y ∈ h(B) implying y ≻h x. However, this contradicts

GARP as x is in the set on the right-hand side and implies x ⪰h y.

(2) ⪰h is pointwise monotone. Let c3 > c2 and a3 < a2. I need to show that

(c3,a3) ⪰h (c2,a2) and not (c2,a2) ⪰h (c3,a3). Take B(c3,a3) = {(c,a) : c ≤ c3,a ≥
a3}. Clearly, (c2,a2), (c3,a3) ∈ B(c3,a3). If (c3,a3) /∈ h(B(c3,a3)), then there is c ≤ c3

and a ≥ a3 such that (c,a) ∈ h(B(c3,a3)), hence contradicting the pointwise monotonic-

ity of h. As such, (c3,a3) ∈ h(B(c3,a3)) and (c3,a3) ⪰h (c2,a2). Since ⪰h generates h, if

60This is the case, for example, in models of price search such as the one considered in my application.
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we had (c2,a2) ⪰h (c3,a3), then for all B that contains both bundles, if (c3,a3) ∈ h(B)

then (c2,a2) ∈ h(B). However, this contradicts the pointwise monotonicity of h.

(3) ⪰h is continuous. I need to show that the upper and lower contour sets of x are

closed for all x ∈ C ×A. Let ⪰h (x) := {y ∈ C ×A : y ⪰h x} denote the upper contour

set. Clearly, ⪰h (x)
c := {y ∈ C ×A : x ≻h y} is obviously open (in the usual topology)

such that ⪰h (x) is closed. An analogous argument shows that the lower contour set is

also closed.

(4) Uniqueness. Suppose there exists ⪰∈ ∩NRN such that ⪰≠⪰h. Then, we can

find x,y ∈ C × A such that x ⪰ y and y ≻h x such that x ∈ ⪰h (y)
c. By pointwise

monotonicity of ⪰, we can take x,y ∈ C × A such that x ≻ y and x ∈ ⪰h (y)
c. Define

c1,α = c1 + (1− α)η1

a1,α = a1 − (1− α)η1,

where x = (c1,a1) and α ∈ [0, 1], and define

c2,β = c2 + (1− β)η1

a2,β = a2 − (1− β)η1,

where y = (c2,a2) and β ∈ [0, 1]. Let xα = (cα,aα) and yβ = (cβ,aβ). By continuity

and pointwise monotonicity of ⪰ and ⪰h, there exists η > 0 such that, for all α ∈ [0, 1]

and β ∈ [0, 1], yβ /∈ ⪰ (xα) and xα /∈ ⪰h (yη). Fix α = β = 1
2 . For any ϵ > 0, consider

the open set around Bx 1
2
,y 1

2

defined by

Oϵ =
{
F ∈ B : H(B,Bx 1

2
,y 1

2

) < ϵ
}
,

where H is the Hausdorff distance. I claim that, for any ϵ < η
3 , if F ∈ Oϵ, then x ∈ F

and y ∈ F . Indeed, if x did not belong to F , then, by comprehensiveness of F , none of

the points (c2,a2) such that c2 ≥ c1 and a2 ≤ a1 would be in F . But the closest point

z to x 1
2
for which it is not case that z ≥ x is at distance at least η

2 from x 1
2
(remember

x 1
2
is at a distance η

2 from x). Clearly, ϵ < η
3 < η

2 and the argument above contradicts

the fact that F ∈ Oϵ. Thus, if F ∈ Oϵ then x,y ∈ F . The argument is that if x /∈ F

then the closest point z in F would be outside the open ball, contradicting that F is in

the open ball.

Observe that for ϵ < η
3 , if F ∈ Oϵ, then F ⊂ Bx0,y0 . This is due to comprehensiveness

of F and (x0,y0) being more “expensive” than (x,y). By pointwise monotonicity of

⪰h, if b ∈ F , then either x0 ⪰h b or y0 ⪰h b. If x0 ⪰h b, then it cannot be that

b ⪰h y, because this would imply x0 ⪰h y, which is false by construction. This is

because we took η > 0 such that, among other things, xα /∈ ⪰h (yβ) for all α and β.
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In particular, this implies x0 /∈ ⪰h (y1 = y). Remember that y ∈ F such that, if we

define V = [⪰h (y) ∩ By0 ], we must have h(F ) ⊂ V . This is because any element of

h(F ) should be at least as good as y.

Using the fact that
⋃

N βN is dense in B, there exist N and B ∈ βN such that B ∈ Oϵ.

Then, by our argument above we can find b ∈ h(B) ⊂ V . From the fact that x ∈ B,

and that ⪰ generates h on βN , this implies b ⪰ x. Finally, from b ∈ V , y0 ≥ b, and

by pointwise monotonicity and continuity of ⪰, y0 ⪰ b. Therefore, we obtain y0 ⪰ x, a

contradiction. This is because y0 /∈ ⪰(x1 = x) by construction.

The first part of the proof (Lemma 1) shows that if the consumer preferences are

known, then the production function is nonparametrically identified. The second part of

the proof (Lemma 2) then shows that the consumer preferences are nonparametrically

identified under mild regularity conditions. Thus, it is possible to nonparametrically

identify the production function of the representative consumer (xi)i∈N when the num-

ber of choice situations goes to infinity (N → ∞). Note that it makes sense to think

of the whole data set (xi)i∈N as a representative consumer since it satisfies SARP by

Assumption 4.

Remark. In the case of linear budget sets, Mas-Colell (1978) shows that the preference

relation is uniquely identified under mild regularity conditions. Interestingly, the result

of Mas-Colell (1978) also covers the case of convex budget sets via a clever argument.

Namely, Proposition 2 of Forges and Minelli (2009) states that, if the consumer has a

concave utility function, then the set of preferences consistent with choices made from

convex budget sets is observationally equivalent to the set of preferences consistent with

choices from a linearized version of the convex budget sets. Thus, without loss of gener-

ality one can treat choices as if stemming from linear budgets.

Proof of Proposition 1

Definition 6. A square matrix M i of dimension T is strongly cyclically consistent if for

every chain {t1, t2, . . . , tm} ⊂ {1, 2, . . . , T}, M i,t1(ci,t2 ,ai,t2) ≤ 0, M i,t2(ci,t3 ,ai,t3) ≤ 0,

. . . ,M i,tm−1(ci,tm ,ai,tm) ≤ 0 impliesM i,tm(ci,t1 ,ai,t1) > 0, whereM i,t := max
k

{Mk
i,t(c

k
i,t,a

k
i,t)}

for all t ∈ T .

Lemma 3. SARP holds if and only if the matrix M i of revealed preferences is strongly

cyclically consistent.

For the sake of a contradiction, suppose SARP is violated. Thus, there exists a sequence

of indices {t1, t2, . . . , tm} such that (ci,t1 ,ai,t1)R(ci,tm , ci,tm) and (ci,tm , ci,tm)R
D(ci,t1 ,ai,t1).

Construct the matrix of revealed preferences Mi and note that the chain {t1, t2, . . . , tm}
violates strong cyclical consistency. Likewise, if strong cyclical consistency is violated,
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then by extracting a chain causing a violation one obtains a violation of SARP as each

element of the matrix represents a revealed preference.

Lemma 4. If a square matrix M i of dimension T is strongly cyclically consistent, then

there exist numbers (ui,t, λi,t)t∈T , λi,t > 0, such that for all s, t ∈ T

ui,s − ui,t ≤ λi,tM i,t(ci,s,ai,s).

where M i,t(ci,s,ai,s) = max
k

{Mk
i,t(ci,s,ai,s)}.

The proof is completely analogous to Fostel, Scarf and Todd (2004).

(i) =⇒ (ii)

Suppose that SARP is violated in the data. Thus, there exists t1, t2, . . . , tm ∈ T

such that Mk
i,t1

(cki,t2 ,a
k
i,t2

) ≤ 0, Mk
i,t2

(cki,t3 ,a
k
i,t3

) ≤ 0, . . . , Mk
i,tm

(cki,t1 ,a
k
i,t1

) ≤ 0 for

all k ∈ K. If there exists a utility function rationalizing the data, then this func-

tion must be such that ui(ci,t1 ,ai,t1) ≥ ui(ci,t2 ,ai,t2), ui(ci,t2 ,ai,t2) ≥ ui(ci,t3 ,ai,t3),

. . . , ui(ci,tm ,ai,tm) ≥ ui(ci,t1 ,ai,t1). However, this sequence of inequalities is either

self-contradictory or violates the assumption that there is a unique maximizer, unless

(ci,t1 ,ai,t1) = · · · = (ci,tm ,ai,tm). Hence, any data set rationalized by a utility function

must satisfy SARP.

(ii) =⇒ (i)

Denote the matrix of revealed preferences for constraint k by Mk
i whose element in row

s and column t is Mk
i,s,t := Mk

i,t(c
k
i ,a

k
i ). Note that the only information that matters is

whether Mk
i,s,t is positive or negative. Denote the matrix of revealed preferences by M i

whose element in row s and column t is M i,s,t := max
k

{Mk
i,s,t}. Note that an element

M i,s,t of M i is negative if and only if Mk
i,s,t ≤ 0 for all k ∈ K. By Lemma 3, SARP holds

if and only if the matrix of revealed preferences M i is strongly cyclically consistent. An

application of Lemma 4 thus yields

ui,s ≤ ui,t + λi,tM i,t(ci,s,ai,s) ∀s, t ∈ T ,

whereM i,t := max
k

{Mk
i,s,t} andMk

i,s,t :=
(
F k(ak, zi,t)⊙Hk(ωi,t)

)′
Gk(ck)−

(
F k(ak

i,t, zi,t)⊙

Hk(ωi,t)
)′
Gk(cki,t).

Let ui(c,a) = min
t∈T

{
ui + λi,tM i,t(c,a)

}
and note it is a continuous function. To

show that it rationalizes the data, first note that for all s ∈ T , ui(ci,s,ai,s) = min
t∈T

{ui,t+

λi,tM i,t(ci,s,ai,s)} = ui,s. This can be seen from the Afriat inequalities and by noting

that Mk
i,t(c

k
i,t,a

k
i,t) = 0 for all k ∈ K such that M i,t(ci,t,ai,t) = 0 for all t ∈ T . Hence,

for any (c,a) such that M i,t(c,a) ≤ 0 we have ui(c,a) ≤ ui,t + λi,tM i,t(c,a) ≤ ui,t =

ui(ci,t,ai,t). The case where M i,t(c,a) < 0 is similar. Finally, it is possible to see that

the inequalities in Lemma 4 and Proposition 1 are strict whenever (cs,as) ̸= (ct,at).

40



This implies a strict ranking of distinct bundles at each t ∈ T , i.e. a unique maximizer.

Proof of Theorem 3

(i) =⇒ (ii)

Suppose the data have been generated by (1) where the utility function is locally nonsa-

tiated, continuous, pointwise monotonic, and concave. Then, the first-order conditions

of the consumer problem for any constraint k ∈ K are given by

∇ckui(ci,t,ai,t)l = λk
i,tF

k
i,l(a

k
i,t, zi,t)H

k(ωk
i,t)∇cG

k(cki,t),

∇akui(ci,t,ai,t)l = λk
i,t∇aF

k
i,l(a

k
i,t, zi,t)H

k(ωk
i,t)⊙Gk(cki,t).

The concavity of the utility function implies that for all s, t ∈ T , we have

ui(ci,s,ai,s)−ui(ci,t,ai,t) ≤
∑
k

[
∇k

cui(ci,t,ai,t)
′(cki,s − cki,t) +∇k

aui(ci,t,ai,t)
′(ak

i,s − ak
i,t)
]
.

Combining the first-order conditions with the concavity of the utility function and letting

ui,t := ui(ci,t,ai,t) for all t ∈ T yields

ui,s − ui,t ≤
∑
k

λk
i,t

[(
F k
i (a

k
i,t, zi,t)⊙Hk(ωk

i,t)⊙∇cG
k(cki,t)

)′
(cki,s − cki,t)

+
(
∇aF

k
i (a

k
i,t, zi,t)⊙Hk(ωk

i,t)⊙Gk(cki,t)
)′

(ak
i,s − ak

i,t)

]
∀s, t ∈ T .

Note that F k
i (a

k
i,t, zi,t) ⊙ Hk(ωk

i,t) ≡ F k
i,t. Also, note that ∇aF

k
i (a

k
i,t, zi,t) and

Hk(ωk
i,t) are unrestricted latent variables. Finally, note that local nonsatiation implies

a positive derivative for at least one good l ∈ Lk for each constraint k and pointwise

monotonicity implies that the sign of each gradient never changes. The inequalities are

obtained by letting Ḟi,t := ∇aF
k
i (a

k
i,t, zi,t).

(ii) =⇒ (i)

Fix some t ∈ T and let t1 := t. Consider any sequence of finite indices τ = {ti}mi=1,

m ≥ 2, ti ∈ T . Let I be the set of all such indices and define

ui(c,a) = min
τ∈I

{∑
k

λk
i,tm

[(
F k
i (a

k
i,tm , zi,tm)⊙Hk(ωk

i,tm)⊙∇cG
k(cki,tm)

)′(
ck − cktm

)
+
(
∇aFi(a

k
i,tm , zi,tm)⊙H(ωk

i,tm)⊙G(cki,tm)
)′(

ak − ak
tm

)]
+

m−1∑
i=1

∑
k

λk
i,ti

[ (
F k
i (a

k
i,ti , zi,ti)⊙Hk(ωk

i,ti)⊙∇cG
k(cki,ti)

)′ (
ckti+1

− ckti
)

+
(
∇aF

k
i (a

k
i,ti , zi,ti)⊙H(ωk

i,ti)⊙G(cki,ti)
)′ (

ak
ti+1

− ak
ti

)]}
.
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This function is the pointwise minimum of a collection of linear functions in (c,a). As

such, ui(c,a) is continuous and concave. The utility function is also increasing in at

least one good in each constraint k and pointwise monotonic from the restrictions on

the gradients in (i).

If the budget sets {Bk
i,t ≤ 0}t∈T are convex, then the first-order conditions of the

model are necessary and sufficient for a maximum. Therefore, I am left to show that for

all t ∈ T [(
λk
i,tF

k
i (a

k
i,t, zi,t)⊙Hk(ωk

i,t)⊙∇cG
k(cki,t)

)
, k ∈ K

]
∈ ∇cui(ct,at)[(

λk
i,t∇aF

k
i (a

k
i,t, zi,t)⊙Hk(ωk

i,t)⊙Gk(cki,t)
)
, k ∈ K

]
∈ ∇aui(ct,at).

Let t ∈ T and note that by definition of ui(·, ·), there is some sequence of indices

τ ∈ I such that

ui(ct,at) ≥
∑
k

λk
i,tm

[ (
F k
i (a

k
i,tm , zi,tm)⊙Hk(ωk

i,tm)⊙∇cG
k(cki,tm)

)′ (
ckt − cktm

)
+
(
∇aF

k
i (a

k
i,tm , zi,tm)⊙Hk(ωk

i,tm)⊙Gk(cki,tm)
)′ (

ak
t − ak

tm

)]
+

m−1∑
i=1

∑
k

λk
i,ti

[ (
F k
i (a

k
i,ti , zi,ti)⊙Hk(ωk

i,ti)⊙∇cG
k(cki,ti)

)′ (
ckti+1

− ckti
)

+
(
∇aF

k
i (a

k
i,ti , zi,ti)⊙Hk(ωk

i,ti)⊙Gk(cki,ti)
)′ (

ak
ti+1

− ak
ti

)]
Add any bundle (c,a) ∈ C ×A to the sequence and use the definition of ui(·, ·) once

again to obtain∑
k

λk
i,tm

[ (
F k
i (a

k
i,tm , zi,tm)⊙Hk(ωk

i,tm)⊙∇cG
k(cki,tm)

)′ (
ckt − cktm

)
+
(
∇aF

k
i (a

k
i,tm , zi,tm)⊙Hk(ωk

i,tm)⊙Gk(cki,tm)
)′ (

ak
t − ak

tm

)]
+

m−1∑
i=1

∑
k

λk
i,ti

[ (
F k
i (a

k
i,ti , zi,ti)⊙Hk(ωk

i,ti)⊙∇cG
k(cki,ti)

)′ (
ckti+1

− ckti
)

+
(
∇aF

k
i (a

k
i,ti , zi,ti)⊙Hk(ωk

i,ti)⊙Gk(cki,ti)
)′ (

ak
ti+1

− ak
ti

)]
+
∑
k

λk
i,t

[ (
F k
i (a

k
i,t, zi,t)⊙Hk(ωk

i,t)⊙∇cG
k(cki,t)

)′ (
ck − ckt

)
+
(
∇aF

k
i (a

k
i,t, zi,t)⊙Hk(ωk

i,t)⊙Gk(cki,t)
)′ (

ak − ak
t

)]
≥ ui(c,a).
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Hence,

ui(ct,at) +
∑
k

λk
i,t

[ (
F k
i (a

k
i,t, z

k
i,t)⊙Hk(ωk

i,t)⊙∇cG
k(cki,t)

)′
(ck − ckt )

+
(
∇aF

k
i (a

k
i,t, zi,t)⊙Hk(ωk

i,t)⊙Gk(cki,t)
)′ (

ak − ak
t

)]
≥ ui(c,a).

Since t ∈ T and (c,a) were arbitrary, the previous inequality corresponds to the defi-

nition of concavity. For the sake of simplicity, say ui is monotone (more is better) and

note that for (c,a) ≤ (ct,at), M
k
i,t(c

k,ak) ≤ 0 for all k ∈ K since the budget sets are

comprehensive, and ui(ct,at) ≥ ui(c,a), where the inequality is strict if Mk
i,t(c

k,ak) < 0

for some k ∈ K. That is, the utility function rationalizes the data set. Next, I show

that we can construct a utility function that guarantees the solution to exist.

For the sake of concreteness, assume that c enters positively in the utility function

and that a enters negatively. Let Γk := maxl∈L,t∈T {akl,t}. Let hkl (·) be a continuously

differentiable function satisfying hkl (0) = 0, hk′l (x) > 0, hk′′l (x) ≥ 0 for x ∈ R+ and

limx→∞ hk′l (x) = ∞.61 To see that there exists a utility function such that a solu-

tion exists, define û(c,a) := u(c,a) −
∑

k

∑Lk

l=1 h
k
l

(
max

{
0, akl − Γk

})
. As before, this

function is continuous and concave. Furthermore, note that û(c,a) ≤ u(c,a) for all

(c,a) ∈ C ×A and û(ct,at) = u(ct,at) for all t ∈ T . Thus, (ct,at)t∈T is still a solution

to the consumer problem. Finally, note that û(c,a) → −∞ whenever a → ∞ or c → ∞
along some dimension for those variables that enter negatively. This follows from the

piecewise linearity of u(·, ·) and the assumption that limx→∞ hk′l (x) = ∞.

Proof of Proposition 2

Assumption 7 states that the price function for any good l ∈ L is given by:

log
(
p∗l,t
)
= α0

l + α1
l log(al,t)− ωl,t.

Due to measurement error in prices, we only get to make inference from

log(pl,t) = α0
l + α1

l log(al,t)− ωl,t.

Summing this equation across goods and dividing by L yields

log(pl,t) =
1

L

L∑
l=1

[
α0
l + α1

l log(al,t)
]
− ωl,t,

where log(pl,t) denotes the average log price paid and ωl,t denotes the average search

61This construction is analogous to that of Deb et al. (2018).
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productivity. Further taking the expectation simplifies the equation to

E
[
log(pl,t)

]
=

1

L

L∑
l=1

(
E
[
α0
l

]
+ E

[
α1
l log(al,t)

])
,

where Assumption 8 was used to eliminate the expected average search productivity.

By Assumption 9, the above can be written as

E
[
log
(
p∗l,t

)]
=

1

L

L∑
l=1

(
E
[
α0
l

]
+ E

[
α1
l log(al,t)

])
.

Taking the derivative with respect to log(al,t), one gets

∂E
[
log
(
p∗l,t

)]
∂ log(al,l)

=
1

L

L∑
l=1

∂
(
E
[
α0
l

]
+ E

[
α1
l log(al,t)

])
∂ log(al,t)

.

By Leibniz integration rule, one can insert the derivative inside the expectation to get

E

∂ log
(
p∗l,t

)
∂ log(al,t)

 =
1

L
E
[
α1
l

]
.62

Finally, summing this equation for each good l ∈ L and dividing by L gives

E

∂ log
(
p∗l,t

)
∂ log(al,t)

 =
1

L
E
[
α1
]
,

where the left-hand side is the expected (average) elasticity of price with respect to

shopping intensity and α1 := 1
L

∑L
l=1 α

1
l is the average shopping technology.

Proof of Proposition 3

The first-order condition of the consumer problem with respect to shopping intensity is

given by
∂u(ct,at)

∂al,t
=

∂p(al,t, ωl,t)

∂al,t
cl,t ∀l ∈ L.

Since the utility function is continuous and concave, it follows that it is absolutely

continuous in al,t.
63 Hence, by the fundamental theorem of calculus, the search cost on

good l ∈ L is given by∫ al,t

1

∂u(ct,at)

∂a
da =

∫ al,t

1

∂p(a, ωl,t)

∂a
cl,t da ∀l ∈ L,

62This requires the partial derivatives to be continuous.
63Note, however, that the utility function is not jointly absolutely continuous (Friedman, 1940).
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which gives

u(ct,at)− u(ct,a−l,t, 1t) = [p(al,t, ωl,t)− p(1t, ωl,t)]cl,t,

where a−l,t denote shopping intensity on every good except good l and 1t is the shopping

intensity on good l in period t. Using the log-linear structure of the price function due

to Assumption 7, the expression simplifies to

u(ct,at)− u(ct,a−l,t, 1t)

p∗l,tcl,t
= 1− a

−α1
l

l ,

where I divided by true expenditure on both sides. Averaging across goods and time

periods and taking the expectation yields the result.
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Kübler, Felix and Herakles Polemarchakis. 2017. “The identification of beliefs from asset

demand.” Econometrica, 85 (4), 1219–1238.

48



Levinsohn, James and Amil Petrin. 2003. “Estimating production functions using inputs

to control for unobservables.” The review of economic studies, 70 (2), 317–341.

Mas-Colell, Andreu. 1977. “The recoverability of consumers’ preferences from market

demand behavior.” Econometrica: Journal of the Econometric Society, 1409–1430.

1978. “On revealed preference analysis.” The Review of Economic Studies, 45

(1), 121–131.

Matzkin, Rosa L. 1991. “Axioms of revealed preference for nonlinear choice sets.” Econo-

metrica: Journal of the Econometric Society, 1779–1786.

McKenzie, David, Ernesto Schargrodsky, and Guillermo Cruces. 2011. “Buying Less

but Shopping More: The Use of Nonmarket Labor during a Crisis [with Comment].”

Economia, 11 (2), 1–43.

Nevo, Aviv and Arlene Wong. 2019. “The elasticity of substitution between time and

market goods: Evidence from the Great Recession.” International Economic Review, 60

(1), 25–51.

Nishimura, Hiroki, Efe A Ok, and John K-H Quah. 2017. “A comprehensive approach

to revealed preference theory.” American Economic Review, 107 (4), 1239–63.

Olley, G Steven and Ariel Pakes. 1996. “The dynamics of productivity in the telecom-

munications equipment industry.” Econometrica, 64 (6), 1263–1297.

Parente, Paulo MDC and JMC Santos Silva. 2012. “A cautionary note on tests of overi-

dentifying restrictions.” Economics Letters, 115 (2), 314–317.

Pytka, Krzysztof. 2017. “Shopping Effort in Self-Insurance Economies.”

Schennach, Susanne M. 2014. “Entropic latent variable integration via simulation.”

Econometrica, 82 (1), 345–385.

Sorensen, Alan T. 2000. “Equilibrium price dispersion in retail markets for prescription

drugs.” Journal of Political Economy, 108 (4), 833–850.

Stigler, George J. 1961. “The economics of information.” Journal of political economy,

69 (3), 213–225.

Thomas, Duncan. 1990. “Intra-household resource allocation: An inferential approach.”

Journal of human resources, 635–664.

Varian, Hal R. 1982. “The nonparametric approach to demand analysis.” Econometrica:

Journal of the Econometric Society, 945–973.

49



Wang, Liqun. (2021) “Identifiability in measurement error models.” in Handbook of

Measurement Error Models, 55–70: Chapman and Hall/CRC.

Wooldridge, Jeffrey M. 2009. “On estimating firm-level production functions using proxy

variables to control for unobservables.” Economics letters, 104 (3), 112–114.

50


	Introduction
	Class of Problems
	Environment
	The Consumer Problem
	Identified Set

	Identification
	Point Identification

	Estimation Strategy
	Shape Restrictions from Preferences
	Characterization via Moment Functions
	Statistical Rationalizability
	Statistical Inference

	Application to Price Search
	Model
	Environment
	Price Search Rationalizability

	Data
	Sample Construction
	Measurement Error

	Empirical Results
	Price Search Rationalizability
	Empirical Results
	Discussion

	Conclusion
	Bibliography

