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Abstract

This paper develops a revealed preference methodology to set identify the

discount factor in the exponential discounting model. My approach makes

no parametric assumption on the utility function, allows for unrestricted

heterogeneity, and accounts for measurement error. Using longitudinal data

from checkout scanners, I bound household-specific discount factors and

assess their sensitivity to measurement error. I find that accounting for

unobserved heterogeneity is important as observable characteristics fail to

capture differences in discounting.
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1 Introduction

The exponential discounting model is a predominant tool for analyzing dynamic

choice in applied work. Its attractiveness rests in that time preferences are sum-

marized by a single parameter—the discount factor. This allows one to tractably

analyze a decision maker’s intertemporal choices, which is crucial in a vast range

of applications. Accordingly, many studies have tried to recover its key time pa-

rameter. However, a common feature in this literature is the specification of the

consumer’s preferences.1 This constitutes a potentially important limitation as

erroneously specifying preferences may lead to spurious estimates of the discount

factor.
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1For an overview of this large literature, see Frederick et al. (2002).
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At its core, the exponential discounting model assumes that the utility func-

tion is additively time-separable and stationary. Under these assumptions, the

transitivity of preferences can be characterized by the well-known Generalized

Axiom of Revealed Preference (GARP). In particular, Afriat (1967) showed that

for any finite data set {(ρt, ct)}t∈T of discounted prices and demands, GARP

is necessary and sufficient for the existence of a well-behaved utility function

that rationalizes the data. The distinctive feature of exponential discounting,

though, is the prediction that consumers will be time consistent. Namely, it

requires consumers to commit to their initial plan as time unfolds.2

I show that the exponential discounting model, which is normally stated as a

dynamic maximization problem with an intertemporal budget constraint, may be

expressed as a repeated static utility maximization problem without any budget

constraint. Specifically, a consumer is an exponential discounter if and only if

there exists a locally nonsatiated instantaneous utility function u : RL+ → R and

a discount factor δ ∈ (0, 1] such that

ct ∈ arg max
c∈RL

+

u(c) + δ−t(ydt − ρ′tc) ∀t ∈ T ,

where ydt > 0 denotes discounted income in period t. Letting sd := ydt − ρ′tc
denote discounted savings and Ut(c, s

d) := u(c) + δ−tsd, the objective function

may be seen as an additively separable time-dependent augmented utility func-

tion Ut : RL+ × R → R. The dynamics of the model is captured through the

incorporation of savings into the consumer’s consideration. Indeed, the amount

a consumer is willing to consume in any time period is regulated by his desire

to save for future consumption.

My methodology exploits the theory of revealed preference popularized by

Afriat (1967) and Varian (1982). This approach obtains sharp conditions that

any demand data must satisfy in order to be consistent with utility maximization,

and reciprocally, any behavior stemming from utility maximization must satisfy

them.3 In the exponential discounting model, for a given set of observations

{(ρt, ct)}t∈T , these conditions yield a set of linear inequalities that are known up

to the discount factor. Since revealed preference conditions are exact, the main

2In experimental settings, a preference reversal occurs when the consumer chooses a sooner-
smaller reward over a later-larger one and then switches to the later-larger reward when an
equal delay is added to both outcomes. This behavior violates time consistency if the consumer
deviates from his plan and chooses the sooner-smaller reward in the future (Halevy, 2015).

3Although it is possible to impose additional constraints on the utility function, the revealed
preference framework does not require it.
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requirement maintained in this study is that consumers have perfect foresight. In

addition, I impose the marginal utility of discounted expenditure to be constant

across time as it is necessary for exponential discounting to have implications

beyond GARP (Browning, 1989).

A data set either satisfies or violates the revealed preference inequalities that

characterize exponential discounting. This makes the direct implementation of

these inequalities of limited applicability as they fail to handle innocuous devia-

tions that may arise in the data. As such, I propose a statistical test that allows

for measurement error in variables as in Varian (1985). While this statistical

test can be inverted to recover nonparametric bounds on the discount factor, it

has the undesirable property to be extremely conservative, thus hindering one’s

ability to make informative inference. I address this caveat by meaningfully

disciplining measurement error in terms of percentage of wasted income.

In my empirical application, I apply my methodology to the checkout scanner

panel data set on food expenditures from Echenique, Lee, and Shum (2011). I

find that many consumers behave consistently with exponential discounting when

measurement error in prices is taken into account. Moreover, I show that bounds

on the discount factor get tighter as the extent of measurement error decreases.

Finally, I find that observable characteristics such as income, education and age

fail to capture heterogeneity in discounting.

The remainder of the paper is organized as follows. Section 2 reviews the

related literature. Section 3 formally defines the exponential discounting model,

obtains its time-dependent augmented utility representation, and derives its

testable implications. Section 5 introduces the statistical test and provides a

confidence set for the discount factor. Section 6 contains the empirical applica-

tion and Section 7 concludes. The main proofs and supplemental material can

be found in the Appendices.

2 Related Literature

This paper builds on the exponential discounting characterization of Browning

(1989) in order to derive a novel representation of the model in terms of a time-

dependent augmented utility function. The use of an augmented utility function

has also been used by Deb et al. (2018) in a different framework. They con-

sider the concept of revealed price preference and obtain a consistency condition

called the Generalized Axiom of Price Preference (GAPP). The augmented util-

ity function I derive is distinct from theirs as it has the peculiarity of being
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time-dependent; a notable implication is that exponential discounting can be

thought of as a static model with reference-dependent preferences.4

This new representation lends itself to a partial efficiency analysis similar to

that of Afriat (1973) which allows me to measure the severity of a violation from

exponential discounting in the data. In this respect, my result relates to existing

partial efficiency results such as those for static utility maximization (Halevy,

Persitz and Zrill, 2018; De Clippel and Rozen, 2018), homothetic rationalizability

(Heufer and Hjertstrand, 2017), and expected utility maximization (Echenique,

Imai and Saito, 2018). I complement these papers by bringing partial efficiency

to a dynamic setting. Notably, my extension allows one to use the statistical

test of Cherchye et al. (2020) to exponential discounting.

My endeavor is complementary to that of Adams et al. (2014) who extend the

analysis of the exponential discounting model for preference heterogeneity and

renegotiations within the household. It also relates to models of habit formation

such as the one proposed in Crawford (2010) and Demuynck and Verriest (2013)

who examine the fit of richer life-cycle models. More generally, my approach

is similar to that of Blow, Browning and Crawford (2017) who develop a test

for the quasi-hyperbolic model. My work differs from theirs in that I focus on

improving the applicability of the standard version of exponential discounting.

My methodology is close to that of Brown and Calsamiglia (2007) who pro-

vide conditions for quasilinear utility rationalization, and to Echenique, Imai and

Saito (2020) who provide an axiomatic characterization of exponential discount-

ing for experimental data.5 Instead, my test is aimed to be applied to survey or

scanner data where choices are made over multidimensional consumption bun-

dles.

3 Exponential Discounting

In this section, I introduce the notation used throughout the paper, formally

define the exponential discounting model, and show how to get nonparametric

bounds on the discount factor.

4In this light, my representation relates to the literature on reference-dependent utility
functions popularized by the seminal work of Kahneman and Tversky (1979).

5Their test applies to a single good, a case that more naturally occurs in experiments.
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3.1 Notation

The typical scenario under consideration is that of purchases made by a consumer

over a certain time window. Let L ∈ {1, ..., L} denote the number of observed

commodities and T = {0, ..., T} the periods for which data on consumers are

observable. For any good l ∈ L and time period t ∈ T , denote discounted price

by ρl,t = pl,t/
∏t
i=0(1 + ri), where pl,t is the spot price and ri is the interest rate,

and denote consumption by cl,t.
6 An observation is therefore a pair (ρt, ct) ∈

RL++ × RL+, and accordingly, a data set is written as {(ρt, ct)}t∈T .

3.2 Exponential Discounting Rationalizability

The objective function faced by an exponential discounting (ED) consumer at

time τ ∈ T is given by

Uτ (cτ , ..., cT−τ ) = u(cτ ) +

T−τ∑
j=1

δju(cτ+j),

where u(·) is the instantaneous utility function and δ ∈ (0, 1] is the discount

factor. Moreover, consumption satisfies the linear budget constraint

ρ′tct + sdt = ydt + adt ∀t ∈ {τ, . . . , T},

where sdt denotes discounted savings, ydt > 0 denotes discounted income and at

is the discounted value of assets held at period t.7 The assets evolve according

to the law of motion: at = (1+rt)st−1. A data set is consistent with exponential

discounting if it can be thought of as stemming from the model.

Definition 1. A data set {(ρt, ct)}t∈T is ED-rationalizable if there exists a

locally nonsatiated, continuous, monotonic, and concave instantaneous utility

function u(·), an income stream (ydt )t∈T ∈ R|T |++, an initial asset level a0 ≥ 0, and

a discount factor δ ∈ (0, 1] such that the consumption stream (ct)t∈T solves

max
(ct)t∈T ∈R

L×|T |
+

u(c0) +

T∑
t=1

δtu(ct) s.t. ρ′0c0 +

T∑
t=1

ρ′tct = y0 +

T∑
t=1

ydt + a0.

The empirical implications of exponential discounting is captured by the

following result due to Browning (1989).

6The interest rate in the first period is set to zero, that is, r0 = 0.
7That is, sdt = st/

∏t
i=0(1 + ri), y

d
t = yt/

∏t
i=0(1 + ri) and adt = at/

∏t
i=0(1 + ri).
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Proposition 1. The following statements are equivalent:

(i) The data set {(ρt, ct)}t∈T is ED-rationalizable.

(ii) There exist numbers ut, t = 0, . . . , T, and a discount factor δ ∈ (0, 1] such

that

us ≤ ut + δ−tρ′t(cs − ct) ∀s, t ∈ T .

(iii) There exists a discount factor δ ∈ (0, 1] such that for any subset of indices

τ = {ti}mi=1 with ti ∈ T and m ≥ 2,

0 ≤ δ−t1ρ′t1(ct2 − ct1) + . . .+ δ−tmρ′tm(ct1 − ctm). (CM)

Proposition 1 gives two alternative tests for the exponential discounting

model. Conditional on δ ∈ (0, 1], condition (ii) is a set of linear inequalities

and can be solved using linear programming. Turning to (iii), note that pairs

of indices s, s + h ∈ T , where h ≥ 1, provide bounds on the discount factor.

Accordingly, I define the greatest lower bound and the least upper bound on the

discount factor as

glb := max
s,s+h∈T

{(
ρ′s+h(cs − cs+h)

ρ′s(cs − cs+h)

)1/h}
such that ρ′s(cs − cs+h) < 0

and

lub := min
s,s+h∈T

{(
ρ′s+h(cs − cs+h)

ρ′s(cs − cs+h)

)1/h}
such that ρ′s(cs − cs+h) > 0,

whenever such bounds exist, and glb = 0, lub = 1, otherwise.

To gain some intuition on these bounds, note that when ρ′s(cs − cs+h) < 0,

the consumer does not reveal a preference for the earlier bundle over the later

one.8 This can only happen if he is somewhat patient and therefore yields a

lower bound on the discount factor. In the case where ρ′s(cs − cs+h) > 0, the

consumer reveals a preference for the earlier bundle over the later one. In turn,

this can only happen if he is somewhat impatient and therefore yields an upper

bound on the discount factor.

Furthermore, note that the size of ρ′s(cs − cs+h) < 0 gives an indication of

how enticing cs+h is compared to cs at time s. Likewise, ρ′s+h(cs − cs+h) < 0

8For any t ∈ T , a bundle ct is said to be revealed preferred to a bundle c if ρ′t(c− ct) ≤ 0.
See Appendix A for a detailed review of revealed preference concepts.
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gives an indication of how enticing cs+h is compared to cs at time s + h. The

more enticing cs+h becomes at time s + h relative to time s, the more patient

the consumer gets. Intuitively, when cs+h becomes an increasingly better option

at time s+h relative to time s, the consumer’s willingness to leave cs+h for later

strengthens. In other words, the lower bound takes on larger positive values. A

similar interpretation holds for upper bounds.

With these bounds in hand, condition (iii) allows me to derive necessary

conditions that yield additional intuition on the ED model and will prove useful

for computational purposes.

Corollary 1. The data set {(ρt, ct)}t∈T is ED-rationalizable only if GARP holds

and

glb ≤ lub ; glb ≤ 1 ; lub > 0. (CD)

Corollary 1 states that the exponential discounting model has an additional

testable implication compared to static utility maximization. As for the latter,

GARP captures within-period consistency. That is, it ensures that the bundle

chosen at time t is the best among all feasible bundles in that period. In con-

trast, condition CD represents the dynamic of the model and guarantees that

the intertemporal choices of the consumer are pairwise time consistent. How-

ever, these conditions are not sufficient for ED-rationalizability, as the following

example displays.

Example 1. Consider a bivariate demand (L = {1, 2}) with three time periods

(T = {0, 1, 2}). The consumer has a data set where (ρ0, c0) = ([1, 1]′, [4, 3]′),

(ρ1, c1) = ([2, 5]′, [1, 2]′) and (ρ2, c2) = ([4, 2]′, [3, 6]′). It is easy to verify that

GARP holds. Indeed, c0R
Dc1, c2R

Dc0 and c2R
Dc1 so no cycle exists. To see

that CD is also satisfied, note that

ρ′1(c0 − c1)
ρ′0(c0 − c1)

=
11

4
,

(
ρ′2(c0 − c2)
ρ′0(c0 − c2)

)1/2

=
−2

−2
= 1, and

ρ′2(c1 − c2)
ρ′1(c1 − c2)

=
−16

−24
=

2

3
.

Clearly, glb = 1 and lub = 11/4 so the conditions of CD are met. However, the

data set does not satisfy CM since when δ is equal to one9,

f(δ) := δ−2ρ′2(c1 − c2) + δ−1ρ′1(c0 − c1) + δ−0ρ′0(c2 − c0) = −16 + 11 + 2 < 0.

In practice, Corollary 1 only involves testing GARP and checking the set

9It is sufficient to check δ = 1 as the first-order condition of f(δ) is strictly positive for all
δ ∈ (0, 1].
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of inequalities in CD. As highlighted by Varian (1982), one can use an efficient

algorithm called Warshall’s algorithm to get the transitive closure of the direct

revealed preference relation. Importantly, these conditions can be parallelized,

thus greatly reducing the computational burden when exponential discounting

has to be tested repeatedly.

4 Exponential Discounting under Partial Efficiency

This section shows that the exponential discounting model has a time-dependent

augmented utility function representation that can be used to account for incon-

sistent choices in the observed data.

4.1 Time-dependent Augmented Utility Function

The main problem with the results in the previous section is that, when a data

set is not exactly ED-rationalizable, it becomes impossible to recover bounds on

the discount factor. This is highly prohibitive as the observed data are often

inconsistent with the model. For example, in the presence of measurement error

the observed data could be inconsistent with the model even if the true data are

ED-rationalizable.

To remedy this problem, I provide a novel characterization of the exponential

discounting model that will allow me to generalize the results introduced in the

previous section.

Theorem 1. The following statements are equivalent:

(i) The data set {(ρt, ct)}t∈T is ED-rationalizable.

(ii) There exists a locally nonsatiated, continuous, monotonic and concave in-

stantaneous utility function u(·) and a discount factor δ ∈ (0, 1] such that

for all t ∈ T and c ∈ RL+

u(ct)− δ−tρ′tct ≥ u(c)− δ−tρ′tc.

A quick comparison of the last condition in Theorem 1 with the standard

formulation of exponential discounting highlights two major differences. First,

there is no budget constraint in the latter. Second, the consumer’s problem is

much simpler as it only requires solving for optimal consumption bundles rather

than the whole consumption stream. To interpret condition (ii), it is useful to
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rewrite it as

ct ∈ arg max
c∈RL

+

u(c) + δ−t(ydt − ρ′tc) ∀t ∈ T .

This formulation emphasizes that exponential discounting can be seen as

a repeated static utility maximization problem. Letting sd := ydt − ρ′tc denote

savings and Ut(c, s
d) := u(c)+δ−tsd, the objective function can be interpreted as

a time-dependent augmented utility function Ut : RL+×R→ R. It indicates that,

in any given time period, the consumer values both current consumption and

savings. This compromise between current consumption and savings captures

the idea that increasing consumption today leaves a lesser amount of wealth for

future periods, thus diminishing future consumption. In the absence of a budget

constraint, the mechanism by which an interior solution is achieved therefore

relies on the trade-off between the two.

4.2 Exponential Discounting under Partial Efficiency

In the revealed preference literature, it is standard to deal with deviations from

a given model by slightly relaxing its constraints. Following this approach, I

shall adopt the novel representation of Theorem 1 for exponential discounting

rationalizability under partial efficiency.

Definition 2. Let e ∈ (0, 1]. The e-ED model rationalizes the data {(ρt, ct)}t∈T
if there exists a locally nonsatiated, continuous, monotonic and concave utility

function u(·) and a discount factor δ ∈ (0, 1] such that for all t ∈ T and c ∈ RL+

u(ct)− δ−tρ′tct ≥ u(c)− δ−tρ′tc/e.

This definition accounts for digressions from exponential discounting by con-

sidering an efficiency level e that rationalizes every choice of a consumer at

once.10 In particular, note that any consumption behavior may be rationalized

by the e-ED model for an e arbitrarily close to zero.11 To see the economic

intuition behind e, note that for a given time period t, the expression in the

10This choice follows the same suggestion as Afriat (1973) for static utility maximization.
Alternatively, one could have an efficiency index for each choice as in Varian (1990), and
then consider some aggregator function (Dziewulski, 2018) to determine the overall level of
inefficiency. Interestingly, Dziewulski (2018) provides a formal link between efficiency levels
and the notion of just-noticeable difference.

11That is, e may capture many sources of violation occurring simultaneously, as well as
consumption behavior outside of the exponential discounting framework.
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definition may be written as

δt(ũ(ct)− ũ(c)) ≥ eρ′tct − ρ′tc,

where the utilities have been scaled by a factor e. That is, the efficiency level

ensures that the discounted benefit from consuming ct rather than c is greater

than the additional cost incurred from purchasing ct instead of c. The difference

between the actual cost of acquiring ct and what it should have been for it

to be worthwhile therefore gives a measure of wasted income. Namely, for some

e ∈ (0, 1] and period t ∈ T , the consumer wastes an amount equal to ρ′tct−eρ′tct
or (1− e)% of his income by making an inefficient choice.12 The following result

extends Proposition 1 to a partial efficiency setting.

Proposition 2. For a given e ∈ (0, 1], the following statements are equivalent:

(i) There exists a locally nonsatiated, continuous, monotonic and concave util-

ity function u(·) and a discount factor δ ∈ (0, 1] e-ED rationalizing the data

{(ρt, ct)}t∈T .

(ii) There exist numbers ut, t = 0, . . . , T, and a discount factor δ ∈ (0, 1] such

that

us ≤ ut + δ−tρ′t(cs/e− ct) ∀s, t ∈ T .

(iii) There exists a discount factor δ ∈ (0, 1] such that for any subset of indices

τ = {ti}mi=1 with ti ∈ T and m ≥ 2,

0 ≤ δ−t1ρ′t1(ct2/e− ct1) + . . .+ δ−tmρ′tm(ct1/e− ctm). (CM(e))

Proposition 2 gives a way to gauge the severity of departure from exponential

discounting by finding an efficiency index e ∈ (0, 1] e-ED rationalizing the data.13

Conditional on (e, δ) ∈ (0, 1]2, the existence of a solution can be checked by

solving the set of inequalities in Proposition 2 (ii) using linear programming. A

data set that needs a small efficiency level to be e-ED rationalizable is farther

away from exponential discounting than one with a large efficiency level. In

particular, if e = 1 then the data set is ED-rationalizable.

12Since I consider a common rationalizing efficiency level for all time periods, the consumer
wastes up to (1− e)% of his lifetime income.

13Appendix B discusses efficiency indices of interest such as the largest e ∈ (0, 1] e-ED
rationalizing the data.
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Remark. By imposing e = δ = 1 in Proposition 2, I recover the conditions for

quasilinear utility maximization from Brown and Calsamiglia (2007). This ob-

servation makes clear that quasilinear utility maximization can be viewed as a

special instance of exponential discounting. To test quasilinear utility maximiza-

tion under partial efficiency, it suffices to find a solution to the inequalities in

Proposition 2 conditional on δ = 1.

5 Inference on the Discount Factor

In this section, I introduce measurement error in prices, present the statistical

test of Varian (1985) when applied to the exponential discounting model, and

propose a constrained statistical test based on e-ED rationalizability. I then

show how the test can be inverted to construct a confidence set for the discount

factor.

5.1 Statistical Test

Suppose prices are mismeasured such that observed prices ρt differ from true

prices ρ∗t .
14 Specifically, suppose that

ρt = ρ∗t /(1 + εt),

where εt is assumed to be a random vector whose components follow independent

normal distributions with mean zero and unknown variance σ∗2 > 0.15 That is,

εl,t ∼ N(0, σ∗2) for all l ∈ L and all t ∈ T . It is useful to note that, under this

assumption, the test statistic

T (σ∗2) :=

T∑
t=0

L∑
l=1

(ρ∗l,t/ρl,t − 1)2/σ∗2 (1)

follows a chi-square distribution. Since true prices are unobservable, the idea con-

sists of obtaining a lower bound on T (σ∗2) by considering the following quadratic

programming problem:

S(σ∗2, δ∗) := min
(π,u)∈RL×|T |

++ ×R|T |

T∑
t=0

L∑
l=1

(πl,t/ρl,t − 1)2/σ∗2, (2)

14In my empirical application, I use scanner data on food expenditures in which measurement
error in prices prevails.

15Alternatively, one can assume an additive error: ρt = ρ∗t + εt. I consider proportional
measurement error as the scale of discounted prices changes significantly across time.
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subject to

us − ut ≤ δ∗−tπ′t(cs − ct) ∀s, t ∈ T ,

where δ∗ is the true discount factor. If the data set is consistent with exponential

discounting under true prices, then one can always pick πt = ρ∗t for all t ∈ T .

Accordingly, S(σ∗2, δ∗) ≤ T (σ∗2) such that

P
[
S(σ∗2, δ∗) ≤ χ2

d,α

]
≥ P

[
T (σ∗2) ≤ χ2

d,α

]
= 1− α,

where χ2
d,α is the critical value of the chi-square distribution with d = L · |T |

degrees of freedom and prespecified confidence level α ∈ (0, 1).

5.2 Constrained Statistical Test

The main disadvantage of the previous test is that prices that solve the problem

(2) may be much closer to observed prices than actual true prices. That is, the

test is extremely conservative. To alleviate this limitation, I propose to further

restrict the set of allowable true prices to those satisfying e-ED, therefore yielding

the following constraints:

us − ut ≤ δ∗−tπ′t(cs − ct) ≤ δ∗−tρ′t(cs/e− ct) ∀s, t ∈ T , (3)

where e ∈ (0, 1], (ut)t∈T are real numbers, and (πt)t∈T are candidate true prices.

The first inequality in (3) requires the solution (πt)t∈T to be consistent with

exponential discounting. The second inequality further ensures that the solution

is not an overly distorted version of observed prices as measured by e-ED. The

latter can be viewed as requiring that measurement error be small in the sense

that the econometrician is not led to believe that the consumer wastes more than

1−e% of his income. For a fixed e ∈ (0, 1], the resulting constrained optimization

problem is given by

SC(σ∗2, δ∗, e) := min
(π,u)∈RL×|T |

++ ×R|T |

T∑
t=0

L∑
l=1

(πl,t/ρl,t − 1)2/σ∗2, (4)

subject to

us − ut ≤ δ∗−tπ′t(cs − ct) ≤ δ∗−tρ′t(cs/e− ct) ∀s, t ∈ T ,

where (ut)t∈T and (πt)t∈T may take different values than those that solve the

optimization problem (2).
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It is useful to note that SC(σ∗2, δ∗, e) ≥ S(σ∗2, δ∗) such that SC(σ∗2, δ∗, e) is

a less conservative test statistic. Nevertheless, the restriction that the solution of

the constrained optimization problem satisfies e-ED becomes immaterial when

e ∈ (0, 1] approaches zero. Thus, the optimization problem (2) is a special case

of the constrained optimization problem (4).

5.3 Inference

Let σ2 ≥ σ∗2 and e ∈ (0, 1] be fixed numbers, where σ2 may be thought of as

an upper bound on the variance. Since the true discount factor is unknown, the

key to get a feasible test statistic is to set δ ∈ (0, 1] and solve

V (δ, e) := min
(π,u)∈RL×|T |

++ ×R|T |

T∑
t=0

L∑
l=1

(πl,t/ρl,t − 1)2, (5)

subject to

us − ut ≤ δ−tπ′t(cs − ct) ≤ δ−tρ′t(cs/e− ct) ∀s, t ∈ T .

Defining SC(σ2, δ, e) := V (δ, e)/σ2, the constrained confidence set is obtained by

inverting the constrained test statistic:

CSC :=
{
δ ∈ (0, 1] : SC(σ2, δ, e) ≤ χ2

d,α

}
.

Likewise, the confidence set associated with the unconstrained test statistic is

defined by

CS :=
{
δ ∈ (0, 1] : S(σ2, δ) ≤ χ2

d,α

}
.

Noting that lim
e→0

SC(σ2, δ, e) = S(σ2, δ), we have

P
[
lim
e→0

δ∗ ∈ CSC
]

= P [δ∗ ∈ CS] ≥ P
[
S(σ∗2, δ∗) ≤ χ2

α

]
≥ 1− α.

In words, the constrained test statistic converges to the unconstrained test

statistic when e ∈ (0, 1] approaches zero. In that case, the probability that the

constrained confidence set covers the true discount factor becomes at least 1−α.

Conditional on (σ2, e), the constrained confidence set can be recovered by solving

(5) for each δ ∈ (0, 1]. The choice of these variables should be chosen from prior

knowledge of the data set. For example, it may be possible to set σ2 = σ∗2 if

validation data are available.
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6 Empirical Application

6.1 Data

In my empirical analysis, I implement the methodology developed in the previous

sections using the Stanford Basket Dataset, which is a panel data set containing

expenditures of 494 households between June 1991 and June 1993.16 Specifically,

I use the transformed data set of Echenique, Lee and Shum (2011). As such,

goods for which prices are observed in every week are retained and aggregated

by brand for periods of four weeks. This yields a total of 375 distinct goods

belonging to one of the following 14 categories: bacon, barbecue sauce, butter,

cereal, coffee, crackers, eggs, ice cream, nuts, analgesics, pizza, snacks, sugar and

yogurt.

Since none of these categories contain goods purchased for special events

(e.g., turkey for Thanksgiving) or products whose quality may change with sea-

sons (e.g., fruits), I expect preferences to be roughly stable over the time window

considered. Additionally, due to the focus on food items, I do not expect con-

sumers’ purchases to vary considerably in response to changes in income. Finally,

aggregation to monthly expenditure should mitigate stockpiling associated with

sales.

The data set is prone to measurement error since it contains shelf prices

instead of transaction prices. Thus, observed prices differ from actual prices

paid whenever a consumer uses discounts such as coupons. As the data do

not contain information on interest rates, I include interest rates on personal

loans at commercial banks from the Federal Reserve Bank of St. Louis.17 I

report demographic information about households in the data set in Table 1.

For a comprehensive description of the scanner data set, I refer the reader to

Echenique, Lee and Shum (2011).

Table 1: Demographic Variables

16I treat households as unitary entities even though they may have many members. As such,
I refer to a household as a consumer or an individual.

17Since the data on interest rates are quarterly, I use a linear interpolation to obtain monthly
observations.
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Variable Number of Households

Family size:

Midsize (3,4 members) 187

Large size (> 4 members) 65

Income:

Mid annual income (∈ [$20k, $45k]) 200

High annual income (> $45k) 141

Age:a

Middle-aged 201

Old-aged 157

Education:b

High school 197

College 255

Total households 480

a Middle-aged households are those in which the average of the spouses’ ages is
between 30 and 65; in old-aged households, this average exceeds 65.
b If both spouses are present in a household, the average education of both
spouses is reported.

6.2 Specification

In what follows, I restrict the range of the monthly discount factor to [0.75, 1.0]

and use a step size of 0.01. This support restriction is essentially without loss

of generality as the resulting support of the annualized discount factor becomes

approximately [0.02, 1.0].18 For ease of comparison, I report the confidence sets

for the annualized discount factor.

I also restrict the sample to consumers that do not appear to waste more

than 15% of their expenditures at the observed data. That is, consumers that

are e-ED rationalizable for e ≥ 0.85. This choice is motivated by the fact that the

main source of measurement error in the data is from coupons and the broader

empirical evidence suggesting that almost no consumer saves more than 15% of

their expenditures from sales such as price promotions (Griffith et al., 2009). For

the same reason, I set the standard deviation to a conservative σ = 0.15.

Lastly, I set the significance level to α = 0.05. Thus, a consumer is said to

be consistent with the exponential discounting model if there exists a monthly

discount factor δ ∈ [0.75, 1.0] and an efficiency level e ∈ [0.85, 1.0] such that

SC(σ2, δ, e) ≤ χ2
d,0.05, where SC(σ2, δ, e) is obtained by solving the feasible con-

strained optimization problem (5).19

18To obtain annualized rates, I raise the monthly discount factor to the power 13. The reason
being that data are aggregated to 4-week periods, hence yielding 13 time periods in a year.

19Let R be the number of goods that are never purchased by a consumer. Since changing the
price of a good never purchased has no effect on the constraint in (3), the number of degrees
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6.3 Inference with Measurement Error and Individual Heterogeneity

In this subsection, I implement my methodology in the data according to the

previous specification. I find that 144 out of the 494 consumers have data sets

consistent with exponential discounting. As such, the following analysis focuses

on those consumers exclusively.

In Figure 1, I show how the average constrained confidence set evolves when

the restrictions on measurement error decrease from e = 0.85 to e = 0.20 The

average constrained confidence set is obtained by averaging over consumers con-

strained confidence sets. In particular, the average constrained confidence set

at e = 0 corresponds to the average unconstrained confidence set obtained by

applying Varian’s (1985) method.

Figure 1: Average Constrained Confidence Set by Efficiency Level.

Figure 1 shows that reasonable restrictions on measurement error can signif-

icantly decrease the size of the confidence set. For Varian’s (1985) method to

be preferable, one would have to believe that measurement error causes the con-

sumer to waste up to 100% of his expenditure at the observed data. By choosing

e > 0, one recognizes that the observed data carry information that can be used

for identification.

of freedom is equal to d = |T |(L−R).
20The step size is 0.1 from e = 0.85 to e = 0.15.
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Next, Figure 2 displays how the average constrained confidence set changes

by demographic. The efficiency level e is set to 0.85 such that measurement error

is allowed to cause the consumer to waste up to 15% of his expenditure at the

observed data. A summary of the demographic variables is given in Table 1.
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Figure 2: Average Constrained Confidence Set by Demographic.

Overall, Figure 2 shows that the relationship between the discount factor and

demographics is relatively weak in the sample. Figure 2 suggests that households

with high school education have slightly larger discount factors compared to

those with college education. Furthermore, it suggests that middle-aged house-

holds and large size households have slightly larger discount factors compared

to old-aged households and midsize households, respectively. However, income

does not appear to have any significant impact on the discount factor.

Although Figure 2 suggests that discount factors are mostly homogeneous,

there may be heterogeneity that is not captured by observable characteristics.

Accordingly, I compare the constrained confidence set at various quantiles of

the sample in Figure 3, where consumers were ordered by the midpoint of their

constrained confidence set. Contrary to the previous analysis, Figure 3 reveals

a fair degree of heterogeneity once individual unobserved heterogeneity is fully

acknowledged.
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Figure 3: Constrained Confidence Set by Quantile.

6.4 Discussion

The annualized discount factors displayed in my application are well below the

values usually assumed in the literature. However, the average constrained confi-

dence set is compatible with other studies using analogous data.21 For example,

Ackerberg (2003) estimates a weekly discount factor of 0.98 with scanner data

on yogurt, therefore giving an annualized discount factor of 0.35.22

My empirical results show that the discount factor is only weakly correlated

with observable characteristics. At the same time, I find sizable heterogeneity

in discount factors once unobserved heterogeneity is accounted for. This finding

suggests that inference based on observable characteristics alone may downplay

the amount of heterogeneity in the data. The presence of heterogeneity implies

that welfare analysis and counterfactuals that make homogeneity assumptions

may poorly apply to a meaningful fraction of consumers.

21My results are not directly comparable to those obtained using survey data such as in Blow,
Browning and Crawford (2017) as the type of data differs.

22See Yao et al. (2012) for further estimates from field data. More generally, see Frederick
et al. (2002) for a comprehensive review of the literature.
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7 Conclusion

My results allow one to set identify individual discount factors while avoiding

the misspecification of preferences. Inference can be made whether or not a data

set contains exact information about the variance in measurement error. Once

the discount factor is elicited, one could use the revealed preference inequalities

to bound a consumer’s response to changes in prices. That is, one could un-

dertake a counterfactual analysis in a similar fashion as Blundell, Browning and

Crawford (2003, 2008). My methodology could therefore be used to do robust

welfare analysis, estimate market power in empirical industrial organization, or

determine optimal pricing schemes in marketing.

In this paper, I recognize that deviations from exponential discounting may

naturally arise due to imperfect measurement.23 An interesting extension would

be to consider a random utility version of exponential discounting to account

for changes in preferences. Towards this goal, Appendix C provides an axiom

for exponential discounting in the paradigm of revealed price preference of Deb

et al. (2018) that appears compatible with the statistical framework laid out

by Kitamura and Stoye (2018). I leave to future work the analysis of a random

utility model of exponential discounting.

Appendix A Elementary Revealed Preference Theory

This section presents the revealed preference terminology and reviews an ex-

tension of the static utility maximization model permitting for violations from

optimal behavior.24

For e ∈ (0, 1], a consumption bundle ct is said to be directly revealed pre-

ferred to a bundle cs if and only if ρ′t(cs/e − ct) ≤ 0, where e is designed to

remove revealed preference information generating cyclic preferences. Let RD(e)

denote the direct revealed preference relation and let R(e) denote its transitive

closure.25 When the inequality is strict, ct is said to be directly revealed strictly

preferred to cs and is denoted PD(e). In the case where there is a sequence

ctR
D(e)ct1 , ct1R

D(e)ct2 , . . . , ctmR
D(e)cs of directly revealed preferences, where

23A general framework to tackle measurement error in utility maximization models is provided
by Aguiar and Kashaev (2020).

24As noted by Blow, Browning and Crawford (2017), the fact that discounting prices does
not change relative prices implies that static rationalizability is the same with either spot
prices (pt)t∈T or discounted prices (ρt)t∈T . I choose to define static utility maximization with
discounted prices for notational consistency.

25The transitive closure R(e) of a relation RD(e) is the smallest relation containing RD(e)
satisfying transitivity.
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t, t1, . . . , tm, s ∈ T , ct is said to be revealed preferred to cs. Naturally, if any of

those preference relations is strict, then ct is said to be revealed strictly preferred

to cs. The preceding notation allows me to succinctly define two important

concepts.

Definition 3. Let e ∈ (0, 1]. A locally nonsatiated utility function u(·) e-
rationalizes the data {(ρt, ct)}t∈T if for every observed bundle ct ∈ RL+, ctR

D(e)c

implies u(ct) ≥ u(c) and ctP
D(e)c implies u(ct) > u(c).

Definition 4. Let e ∈ (0, 1]. A data set {(ρt, ct)}t∈T satisfies the Generalized

Axiom of Revealed Preference (GARP(e)) if for all s, t ∈ T , ctR(e)cs implies

not csP
D(e)ct.

The generalized axiom gives an intuitive necessary condition for rationaliz-

ability by requiring the consumer to have transitive preferences. In particular,

note that GARP(e) is a natural generalization of GARP(1) and simply elim-

inates cycles by reducing the number of revealed preferences. The following

result from Halevy, Persitz and Zrill (2018) and Heufer and Hjertstrand (2017)

extends the influential theorem of Afriat (1967) to consumers violating the model

of atemporal utility maximization.26,27

e-Afriat’s Theorem. For a given e ∈ (0, 1], the following statements are equiv-

alent:

(1) There exists a locally nonsatiated utility function e-rationalizing the data

{(ρt, ct)}t∈T .

(2) The data {(ρt, ct)}t∈T satisfy GARP(e).

(3) There exist numbers ut, λt > 0, t = 0, . . . , T , such that

us ≤ ut + λtρ
′
t(cs/e− ct) ∀s, t ∈ T .

(4) There exists a locally nonsatiated, continuous, monotonic and concave util-

ity function e-rationalizing the data {(ρt, ct)}t∈T .

For practical purposes, the second condition is the most convenient. As high-

lighted by Varian (1982), one can use an efficient algorithm called Warshall’s

26For the case where e = 1, an accessible proof is given by Fostel, Scarf, and Todd (2004).
An alternative and insightful proof is offered by Geanakoplos (2013).

27This theorem, as well as the proposition to follow, could all be written using the efficiency
measure of Varian (1990). For my purposes, it is sufficient to consider a common index for all
observations.
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algorithm to get the transitive closure R(e) of the direct revealed preference

relation RD(e). For a given e ∈ (0, 1], one can then directly check for a con-

tradiction of GARP(e) in the data. Alternatively, conditional on e ∈ (0, 1], one

can use linear programming to solve the system of inequalities given in the third

condition. The goal is then to verify the existence of a pair (ut, λt)t∈T satisfying

it.

From a theoretical standpoint, however, the substance of e-Afriat’s Theorem

lies in the last condition. It implies that, if the consumer’s choices can be thought

of as generated by a locally nonsatiated utility function, then it can further be

assumed to be continuous, monotonic and concave.28,29

Appendix B Efficiency Indices

This section presents the exponential efficiency index, proposes an efficiency in-

dex for time-consistency, and investigates which assumption of the exponential

discounting model is the most problematic in the data.

B.1 Exponential Efficiency Index

For the model of static utility maximization under partial efficiency, it is common

to consider the largest efficiency level rationalizing the data. This index is known

as the CCEI and was suggested by Afriat (1973).30 In a similar fashion, one can

consider the largest efficiency level rationalizing the data for the exponential

discounting model. Formally, I define the exponential efficiency index as

EEI := sup{e ∈ [0, 1] : {(ρt, ct)}t∈T is e-ED rationalizable}.

From the previous analysis, it is clear that the EEI can be interpreted as the

smallest proportion of wasted income arising from the selection of a suboptimal

consumption stream. Moreover, note that the exponential efficiency index is

well-defined as the inequalities in Proposition 2 (ii) will be trivially satisfied for

an e arbitrarily close to zero.

28A mapping f : RL → RL is said to be concave if and only if f(cs) ≤ f(ct)+∇f(ct)
′(cs−ct)

for all s, t ∈ T .
29Concavity can only be assumed without loss of generality in finite data. In the case of

infinite data, it has to be substituted by the weaker assumption of quasiconcavity. I refer the
reader to Reny (2015) for a more detailed discussion.

30The critical cost efficiency index is defined as CCEI := sup{e ∈ [0, 1] :
{(ρt, ct)}t∈T satisfies GARP(e)}.
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Although the EEI provides a measure of distance between a data set and

the exponential discounting model, it does not differentiate between deviations

arising from within-period consistency and time consistency. To disentangle

their respective contributions to the EEI, an efficiency measure that controls

for violations of static utility maximization is needed. For convenience, denote

such an index the time consistency efficiency index (TCEI). In what follows, I

derive the TCEI based on the 2-step rationalization procedure of Heufer and

Hjertstrand (2017) for homothetic rationalizability.

The first stage consists in finding the largest efficiency level rationalizing the

data with respect to static utility maximization and yields

us ≤ ut + λtρ
′
t(cs/CCEI− ct) ∀s, t ∈ T .

Imposing the additional restriction of the exponential discounting model to the

CCEI-Afriat inequalities by setting λt = δ−t yields

us ≤ ut + δ−tρ′t(cs/CCEI− ct) ∀s, t ∈ T .

The TCEI then corresponds to the largest efficiency level rationalizing the pre-

vious system of inequalities with respect to the e-ED model:

us ≤ ut + δ−tρ′t

( cs
CCEI · TCEI

− ct
)
∀s, t ∈ T .

That is, the TCEI gives the additional adjustment required to the CCEI-adjusted

data set to satisfy the e-ED model. Since the largest efficiency level solving the

e-ED model is the EEI, it follows that EEI = CCEI · TCEI. One can therefore

recover the TCEI by first obtaining the CCEI and the EEI. Moreover, taking the

natural logarithm of the previous expression yields the following relationship.

Identity 1. Let EEI < 1, then log(CCEI)
log(EEI) + log(TCEI)

log(EEI) = 1.

This identity allows one to obtain the respective contribution of static utility

maximization and time consistency to the exponential efficiency index.

Definition 5. The contribution of the CCEI to the EEI and of the TCEI to the

EEI are respectively given by

Cg :=
log(CCEI)

log(EEI)
and Ct :=

log(TCEI)

log(EEI)
.

In particular, note that the contribution of each index is always between zero

and one, strictly increases as its efficiency index decreases, and that the com-

bined contribution of each index must always sum up to one. Finally, note that
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the sum of Cg and Ct gives the contribution of the EEI to itself.

B.2 Empirical Application

In what follows, I am interested in the efficiency indices for static utility max-

imization, time consistency and exponential discounting, as well as their re-

spective contributions to the EEI. Let µi denote the mean and σi the standard

deviation, where i ∈ {e, C} refers to the object over which the operation is ap-

plied. Any object i ∈ {e, C} underlined or overlined represents its smallest and

largest value across consumers, respectively.

Using the CCEI for static utility maximization, the TCEI for time consis-

tency and the EEI for exponential discounting, Table 2 presents summary statis-

tics on the efficiency indices and contributions of each index. These results are

obtained with a grid search over δ ∈ (0, 1] with a step size of 0.01 and a binary

search algorithm for the efficiency indices that guarantees them to be within

2−10 of their true values.

Table 2: Rationalizability Results

Efficiency index e e µe σe C C µC σC

CCEI 0.6865 1.0000 0.9551 0.0502 0.0000 1.0000 0.2057 0.2017

TCEI 0.4758 1.0000 0.8365 0.0802 0.0000 1.0000 0.7943 0.2017

EEI 0.3878 0.9561 0.7984 0.0820 1.0000 1.0000 1.0000 0.0000

Notes: The sample size is N = 494. e denotes the lowest efficiency index, e the largest
efficiency index, µe the average efficiency index, and σe the standard deviation of the
efficiency index. C denotes the lowest contribution of the efficiency index to the EEI, C
the largest contribution of the efficiency index to the EEI, µC the average contribution
of the efficiency index to the EEI, and σC the standard deviation of the efficiency index’s
contribution.

Overall, the results in Table 2 indicate that time consistency is a more strin-

gent assumption than GARP, with an average efficiency level for the TCEI below

that of the CCEI by approximately 0.10. The significance of this difference is

better grasped by looking at the average contribution of each index to the EEI.

Markedly, on average, GARP is responsible for about 20% of a violation from

exponential discounting, while 80% of it can be attributed to time consistency.

Appendix C Extension: Theory of Revealed Price
Preference
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The key insight of Theorem 1 was to provide a time-dependent augmented utility

representation of the exponential discounting model. The simplified formulation

then made possible to analyze the empirical implications of the exponential dis-

counting model under partial efficiency. While I focused on the implications of

the model in the standard framework of revealed preference, I now derive the im-

plications of the exponential discounting model under partial efficiency according

to the notion of revealed price preference developed by Deb et al. (2018).31

First, define a time-dependent augmented utility function as a function Ut :

RL+ × R− → R that is assumed strictly increasing in its second argument. The

interpretation is that the consumer dislikes current expenditure as it removes

income that could be used for later consumption. The consumer’s problem can

be summarized as picking ct such that for all t ∈ T and c ∈ RL+

Ut(ct,−c′tδ−tρt) ≥ Ut(c,−c′δ−tρt/e).32

Intuitively, the utility cost of current expenditure becomes more salient as the

consumer gets more patient (δ → 1). Conveniently, the terminology of Section A

can be applied to the notion of revealed price preference. The difference is that

instead of comparing consumption bundles for a given set of prices, we now com-

pare prices for a given consumption bundle. Namely, prices δ−tρt/e are said to be

directly revealed preferred to prices δ−sρs if and only if c′s(δ
−tρt/e− δ−sρs) ≤ 0,

and likewise for other revealed price preference relations. The rationale is that

at prices δ−tρt/e the consumer can buy the bundle cs while having some money

left to spend in the future. Exponential discounting rationalizability and the

corresponding Genereralized Axiom of Price Preference (δ-GAPP(e)) can then

be defined as follows.

Definition 6. Let e ∈ (0, 1]. The e-ED model rationalizes the data {(ρt, ct)}t∈T
if there exists a time-dependent augmented utility function Ut(·, ·) and a discount

factor δ ∈ (0, 1] such that for all t ∈ T and c ∈ RL+

Ut(ct,−c′tδ−tρt) ≥ Ut(c,−c′δ−tρt/e).

Definition 7. Let e ∈ (0, 1]. A data set {(ρt, ct)}t∈T satisfies δ-GAPP(e) if for

31This section introduces the notions of rationalizability and revealed price preference for the
exponential discounting model under partial efficiency. The definitions as found in Deb et al.
(2018) correspond to the case where e = δ = 1.

32This definition slightly generalizes the one presented in Section 3 as the second argument
is not presumed additively separable.
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all s, t ∈ T , there exists a discount factor δ ∈ (0, 1] such that δ−tρtR(e)δ−sρs

implies not δ−sρsP
D(e)δ−tρt.

The next theorem derives the empirical implications of the exponential dis-

counting model in the revealed price preference framework.

Theorem 2. Let e ∈ (0, 1]. For a given data set {(ρt, ct)}t∈T , the following are

equivalent:

(i) The data are e-ED rationalized by a time-dependent augmented utility func-

tion.

(ii) There exists δ ∈ (0, 1] such that the data satisfy δ-GAPP(e).

(iii) The data are e-ED rationalized by a time-dependent augmented utility func-

tion that is continuous, strictly increasing, concave, and such that a max-

imum exists for all ρ ∈ RL++.

Theorem 2 shows that δ-GAPP(e) is both necessary and sufficient for e-ED

rationalizability in the revealed price preference paradigm. Thus, conditional

on a specific value of the discount factor, the methodology of Kitamura and

Stoye (2018) and Deb et al. (2018) should apply to δ-GAPP(e) and, as such,

exponential discounting. In fact, the axiom tested in Deb et al. (2018) is the

“quasilinear” version of the one presented in this section, 1-GAPP(1). Further

note that when Ut(ct,−c′tδ−tρt) := u(ct)−c′tδ−tρt with u(·) a locally nonsatiated

function, the notion of e-ED rationalizability coincides with that of Definition

4. Therefore, δ-GAPP(e) can be seen as a generalization of the exponential dis-

counting model to a nonseparable time-dependent augmented utility function.

Appendix D Preliminaries

Let e, δ ∈ (0, 1]. Let each entry (s, t) of a square matrix A be given by as,t :=

c′t(δ
−sρs/e− δ−tρt) for all s, t ∈ T .

Definition 8. A square matrix A of dimension T+1 is cyclically consistent if for

every chain {t1, t2, . . . , tm} ⊂ {0, 1, . . . , T}, at1,t2 ≤ 0, at2,t3 ≤ 0, . . . , atm−1,tm ≤
0, atm,t1 ≤ 0 implies that all terms are zero.

Lemma 1. A data set {(ρt, ct)}t∈T satisfies δ-GAPP(e) if and only if the square

matrix A is cyclically consistent.
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Proof

Suppose A is cyclically consistent and δ−t1ρt1R(e)δ−tmρtm . This means that

there is a sequence of revealed price preferences such that δ−t1ρt1R
D(e)δ−t2ρt2 ,

δ−t2ρt2R
D(e)δ−t3ρt3 , . . . , δ−tm−1ρtm−1R

D(e)δ−tmρtm . By definition, these imply

at1,t2 ≤ 0, at2,t3 ≤ 0, . . . , atm−1,tm ≤ 0. Note that if δ−tmρtmP
D(e)δ−t1ρt1 , then

atm,t1 < 0. Cyclical consistency then requires that at1,t2 = at2,t3 = · · · = atm,t1 =

0. However, this contradicts the assumption that atm,t1 < 0. As such, we can’t

have δ−tmρtmP
D(e)δ−t1ρt1 , i.e. δ-GAPP(e) holds.

Suppose now that δ-GAPP(e) is satisfied. Construct the matrix A of re-

vealed price preferences and note that at,t ≥ 0 for all t ∈ T . Consider any chain

{t1, t2, . . . , tm} ⊂ {0, 1, . . . , T} such that at1,t2 ≤ 0, at2,t3 ≤ 0, . . . , atm−1,tm ≤ 0,

atm,t1 ≤ 0. For any element as,t pertaining to that chain, we have δ−sρsR
D(e)δ−tρt.

Moreover, by going along the chain we also obtain δ−tρtR(e)δ−sρs. Since δ-

GAPP(e) requires to not have δ−sρsP
D(e)δ−tρt, it must be that as,t = 0.

Lemma 2. CM(e) implies GARP(e).

Proof

I proceed by contraposition. Fix e ∈ (0, 1] and suppose GARP(e) is violated.

Then, for some indices t1, tm ∈ T , ct1R(e)ctm and ctmP
D(e)ct1 . Thus, there

is a sequence of revealed preferences such that ct1R
D(e)ct2 , ct2R

D(e)ct3 , . . . ,

ctm−1R
D(e)ctm , where t1, t2, . . . , tm ∈ T . By definition, the above implies ρ′t1(ct2/e−

ct1) ≤ 0, ρ′t2(ct3/e − ct2) ≤ 0, . . . , ρ′tm−1
(ctm/e − ctm−1) ≤ 0 and ρ′tm(ct1/e −

ctm) < 0. Given δ ∈ (0, 1], we also have δ−tiρ′ti(cti+1/e − cti) ≤ 0 for all

i ∈ {1, . . . ,m − 1} and δ−tmρ′tm(ct1/e − ctm) < 0. Summing up the resulting

inequalities yields

0 > δ−t1ρ′t1(ct2/e− ct1) + δ−t2ρ′t2(ct3/e− ct2) + · · ·+ δ−tmρ′tm(ct1/e− ctm)

which violates CM(e).

Appendix E Proofs

Proof of Theorem 1

(i) =⇒ (ii)

From the first-order condition, we have

∇u(ct) ≤ δ−tρt ∀t ∈ T
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where ∇u(ct) is some supergradient of u(·) at ct. By continuity and concavity

of the instantaneous utility function, we know that for all t ∈ T and c ∈ RL+

u(c) ≤ u(ct) +∇u(ct)
′(c− ct)

Let N be a set of indices such that ∇u(ct)j = δ−tρt,j for all j ∈ N . It follows

that ∇u(ct)j ≤ δ−tρt,j for all j /∈ N . Thus, ct,j = 0 is a corner solution for all

j /∈ N . We therefore have

u(c)− u(ct) ≤ ∇u(ct)
′(c− ct) =

∑
j∈N
∇u(ct)j(cj − ct,j) +

∑
j /∈N

∇u(ct)j(cj − ct,j)

=
∑
j∈N

δ−tρt,j(cj − ct,j) +
∑
j /∈N

∇u(ct)j(cj − ct,j)

≤
∑
j∈N

δ−tρt,j(cj − ct,j) +
∑
j /∈N

δ−tρt,j(cj − ct,j)

where the last inequality holds since ct,j = 0 and cj ≥ 0 for all j /∈ N . As a

result, for all t ∈ T and c ∈ RL+

u(c) ≤ u(ct) + δ−tρ′t(c− ct)

Rearranging gives that for all t ∈ T and c ∈ RL+

u(ct)− δ−tρ′tct ≥ u(c)− δ−tρ′tc

where, by assumption, the instantaneous utility function is locally nonsatiated,

continuous, monotonic, and concave and δ ∈ (0, 1].

(ii) =⇒ (i)

The instantaneous utility function is locally nonsatiated, continuous, monotonic,

and concave and the discount factor satisfies δ ∈ (0, 1]. For all t ∈ T and c ∈ RL+,

we also have

u(ct)− δ−tρ′tct ≥ u(c)− δ−tρ′tc

Rearranging gives that for all t ∈ T and c ∈ RL+

u(c) ≤ u(ct) + δ−tρ′t(c− ct)

This inequality corresponds to the definition of concavity and, therefore, it

follows that δ−tρt is a supergradient of u(·) at ct for all t ∈ T .
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Proof of Proposition 2

(i) =⇒ (ii)

Since the data set {(ρt, ct)}t∈T is e-ED rationalizable, it is the case that for all

t ∈ T and c ∈ RL+
u(ct)− δ−tρ′tct ≥ u(c)− δ−tρ′tc/e

for some δ ∈ (0, 1]. By the same argument as in the proof of Theorem 1 (ii), we

can obtain

u(cs) ≤ u(ct) + δ−tρ′t(cs/e− ct) ∀s, t ∈ T

where one may define ut := u(ct) for all t ∈ T .

(ii) =⇒ (iii)

Starting from the e-ED Afriat inequalities, we have

us ≤ ut + δ−tρ′t(cs/e− ct) ∀s, t ∈ T

Considering any sequence of indices τ ∈ I and summing up the inequalities for

the resulting cycle yields

0 ≤ δ−t1ρ′t1(ct2/e− ct1) + . . .+ δ−tmρ′tm(ct1/e− ctm)

which corresponds to CM(e).

(iii) =⇒ (i)

For some e ∈ (0, 1], define

u(c) = inf
τ∈I

{
δ−τ(m)ρ′τ(m)

(
c/e− cτ(m)

)
+
m−1∑
i=1

δ−τ(i)ρ′τ(i)
(
cτ(i+1)/e− cτ(i)

)}
This utility function is locally nonsatiated, continuous, monotonic and concave

as it is the pointwise minimum of a collection of affine functions. Moreover, the

infimum defining u(c) has no cycle of indices. To see this, let s ∈ T and note

that by CM(e) we have

0 ≤ δ−τ(1)ρ′τ(1)(cτ(2)/e−cτ(1))+. . .+δ
−τ(m)ρ′τ(m)(cs/e−cτ(m))+δ

−sρ′s(cτ(1)/e−cs)

for all τ ∈ T . Consider c ∈ RL+ such that c 6= ct and let τt ∈ I be a minimizing

28



sequence for ct. It follows that

u(c)− δ−tρ′tc/e ≤ δ−tρ′t
(
c/e− ct

)
+ δ−τt(mt)ρ′τt(mt)

(
ct/e− cτt(mt)

)
+

mt−1∑
i=1

δ−τt(i)ρ′τt(i)
(
cτt(i+1)/e− cτt(i)

)
− δ−tρ′tc/e

= δ−τt(mt)ρ′τt(mt)

(
ct/e− cτt(mt)

)
+

mt−1∑
i=1

δ−τt(i)ρ′τt(i)
(
cτt(i+1)/e− cτt(i)

)
− δ−tρ′tct

= u(ct)− δ−tρ′tct

where the first inequality holds since u(c) uses the sequence achieving the in-

fimum for c, the first equality is a mere simplification, and the last equality

is a consequence of τt being a minimizing sequence for ct. I thus have shown

the existence of a locally nonsatiated, continuous, monotonic and concave utility

function and a discount factor δ ∈ (0, 1] e-ED rationalizing the data.

Proof of Theorem 2

(i) =⇒ (ii)

Note that if δ−tρtR(e)δ−sρs, then c′s(δ
−tρt/e − δ−sρs) ≤ 0. As such, we have

that Ut(ct,−c′tδ−tρt) ≥ Ut(cs,−c′sδ−tρt/e) ≥ Us(cs,−c′sδ−sρs), where the first

inequality follows by definition of rationalizability and the second from the re-

vealed price preference relation. The same argument can be made for the strict

relation P (e). Suppose now that δ-GAPP(e) were violated. Then, there would

be t1, tm ∈ T such that δ−t1ρt1R(e)δ−tmρtm and δ−tmρtmP
D(e)δ−t1ρt1 . This

implies that there also exist t2, t3, . . . , tm−1 ∈ T such that δ−t1ρt1R
D(e)δ−t2ρt2 ,

δ−t2ρt2R
D(e)δ−t3ρt3 , . . . , δ−tm−1ρtm−1R

D(e)δ−tmρtm . Thus, we would have

Ut1(ct1 ,−c′t1δ
−t1ρt1) ≥ Ut2(ct2 ,−c′t2δ

−t2ρt2) ≥ · · · ≥ Utm(ctm ,−c′tmδ
−tmρtm) >

Ut1(ct1 ,−c′t1δ
−t1ρt1), an obvious contradiction.

(ii) =⇒ (iii)

In any given time period t ∈ T , denote the consumer’s discounted income by

y > 0 and let sdt := y − c′tδ−tρt denote discounted savings. Extending the data

set for savings, one obtains {(ρt, 1), (ct, s
d
t )}t∈T with the value of money priced

to 1. Since variables are discounted by interest rates, one can also think of the

price for money as evolving according to interest rates but where consumption
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prices and income are in nominal terms. For all s, t ∈ T , note that we have

(δ−tρt/e, 1)′
(
(cs, y−c′sδ−sρs)−(ct, y−c′tδ−tρt/e)

)
≤ 0 iff c′s(δ

−tρt/e−δ−sρs) ≤ 0,

where the same equivalence applies with strict inequalities. Now, define as,t :=

c′t(δ
−sρs/e − δ−tρt) and let the matrix A be defined by As,t := as,t ∀s, t ∈ T .

Likewise, define ãs,t := (δ−tρt/e, 1)′
(
(cs, y − c′sδ−sρs)− (ct, y − c′tδ−tρt/e)

)
and

let the matrix Ã be defined by Ãs,t := ãs,t ∀s, t ∈ T . By Lemma 1, we know that

δ-GAPP(e) holds if and only if A is cyclically consistent. Since the expression

after “iff” corresponds to the notion of revealed price preference, Ã must also

satisfy cyclical consistency if and only if δ-GAPP(e) holds. An application of

Fostel, Scarf and Todd (2004) (Sections 2 and 3) on the matrix Ã then guarantees

the existence of Afriat inequalities given by

us − ut ≤ λt(δ−tρt/e, 1)′
(
(cs, y − c′sδ−sρs)− (ct, y − c′tδ−tρt/e)

)
∀s, t ∈ T .

Summing up the above inequalities, it is clear that an analogue of CM(e) is

satisfied. We can thus construct a well-behaved time-dependent utility function

on {(ρt, 1), (ct, s
d
t )}t∈T following similar steps as those in the proof of Theorem

1 and Proposition 2. To this end, for any c ∈ RL and t ∈ T , define

Ũt(c, y − c′δ−tρt) =

inf
τ∈I

{
λτ(m)

[
δ−τ(m)ρ′τ(m)/e

(
c− cτ(m)

)
+
(
y − c′δ−tρt

)
−
(
y − c′τ(m)δ

τ(m)ρτ(m)/e
)]

+

m−1∑
i=1

(
λτ(i)

[
δ−τ(i)ρ′τ(i)/e

(
cτ(i+1) − cτ(i)

)
+
(
y − c′τ(i+1)δ

−τ(i+1)ρτ(i+1)

)
−
(
y − c′τ(i)δ

−τ(i)ρτ(i)/e
))]}

.

To see why Ũt : RL × R → R is time-dependent, simply note that for two

distinct time periods s, t ∈ T , Ũs(cs, y − c′sδ−sρs) 6= Ũt(ct, y − c′tδ−tρt) even if

ρs = ρt and cs = ct. Moreover, note that Ũt(·, ·) defines a continuous, strictly

increasing in (c, y−c′δ−tρt), and concave time-dependent utility function. Con-

sider c ∈ RL such that c 6= ct and let τt ∈ I be a minimizing sequence for ct. It
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follows that

Ũt(c, y − c′δ−tρt/e) ≤ λt
[
δ−tρ′t/e

(
c− ct

)
+
(
y − c′δ−tρt/e

)
−
(
y − c′tδ−tρt/e

)]
+ λτt(mt)

[
δ−τt(mt)ρ′τt(mt)

/e
(
ct − cτt(mt)

)
+
(
y − c′tδ−tρt

)
−
(
y − c′τ(mt)

δ−τ(mt)ρτ(mt)/e
)]

+

mt−1∑
i=1

λτt(i)

[
δ−τt(i)ρ′τt(i)/e

(
cτt(i+1) − cτt(i)

)
+
(
y − c′τt(i+1)δ

−τt(i+1)ρτt(i+1)

)
−
(
y − c′τt(i)δ

−τt(i)ρτt(i)/e
)]

= λτt(mt)

[
δ−τt(mt)ρ′τt(mt)

/e
(
ct − cτt(mt)

)
+
(
y − c′tδ−tρt

)
−
(
y − c′τ(mt)

δ−τ(mt)ρτ(mt)/e
)]

+

mt−1∑
i=1

λτt(i)

[
δ−τt(i)ρ′τt(i)/e

(
cτt(i+1) − cτt(i)

)
+
(
y − c′τt(i+1)δ

−τt(i+1)ρτt(i+1)

)
−
(
y − c′τt(i)δ

−τt(i)ρτt(i)/e
)]

= Ũt(ct, y − c′tδ−tρt),

where the first inequality holds since Ũt(c, y − c′δ−tρt/e) uses the sequence

achieving the infimum for c, the first equality is a mere simplification, and the

last equality is a consequence of τt being a minimizing sequence for ct. Finally,

defining Ut : RL+ × R− → R by Ut(c,−c′δ−tρt) := Ũt(c, y − c′δ−tρt) yields a

time-dependent augmented utility function rationalizing the data {(ρt, ct)}t∈T ,

as desired. By an identical argument as in Theorem 1 of Deb et al. (2018),

it is possible to modify the aforementioned utility function in order to further

guarantee the existence of a solution to any set of prices ρ ∈ RL++. Since Ut(·, ·)
shares the same properties as Ũt(·, ·), we get that (iii) =⇒ (i).
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