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Abstract We analyze consumer demand behavior using Dynamic Random Utility

Model (DRUM). Under DRUM, a consumer draws a utility function from a stochastic

utility process in each period and maximizes this utility subject to her budget con-

straint. DRUM allows unrestricted time correlation and cross-section heterogeneity in

preferences. We fully characterize DRUM for a panel data of consumer choices and

budgets. DRUM is linked to a finite mixture of deterministic behavior represented as

the Kronecker product of static rationalizable behavior. We provide a generalization

of the Weyl-Minkowski theorem that uses this link and enables conversion of the char-

acterizations of the static Random Utility Model (RUM) of McFadden-Richter (1990)

to its dynamic form. DRUM is more flexible than Afriat’s (1967) framework for time

series and more informative than RUM. We show the feasibility of the statistical test

of DRUM in a Monte Carlo study.
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1. Introduction

One key question in economics is whether consumer behavior is rational. Traditional defi-

nitions of rationality are effectively equivalent to maximizing a utility function that is fixed

in time. Here, we study a notion of rationality in consumer behavior that is stochastic and

dynamic–Dynamic Random Utility Model (DRUM). Under DRUM, each consumer at each

time maximizes the realized utility from a stochastic utility process subject to a budget con-

straint. We provide a revealed preference characterization of DRUM when the longitudinal

distribution of demand is observed for a finite collection of budgets in a finite time window.

This characterization does not make any parametric restriction on (i) the form of utility

functions, (ii) the correlation of utilities in time, and (iii) the heterogeneity of utility in the

cross-section.

There are two main frameworks to analyze consumer behavior: Afriat (1967)’s framework of

static utility maximization and McFadden-Richter (1990)’s framework, called random util-

ity model (RUM). DRUM addresses several important empirical limitations of these models.

In particular, Afriat’s framework is under scrutiny due to experimental and field evidence

against it.1 There is evidence that failures of Afriat’s framework are driven by the strin-

gent assumption of the stability of preferences over time. For example, utility functions may

change over time because of variability in time of the neural computation of value (Kurtz-

David, Persitz, Webb and Levy, 2019), structural breaks (Cherchye, Demuynck, De Rock and

Vermeulen, 2017), or evolving risk aversion (Guiso, Sapienza and Zingales, 2018). DRUM

allows preferences to change freely in time. In contrast to Afriat’s framework, RUM has

found reasonable success explaining repeated cross-sections of household choices (Kawaguchi,

1For examples in household consumption see Echenique, Lee and Shum (2011), Dean and Martin (2016)
and in choices over portfolios over risk or uncertainty see Choi, Fisman, Gale and Kariv (2007), Choi, Kariv,
Müller and Silverman (2014), Ahn, Choi, Gale and Kariv (2014). The violations of rationality originally were
thought to be small (Echenique et al., 2011, Choi et al., 2007), but newer experimental data sets show these
violations can be severe (Brocas, Carrillo, Combs and Kodaverdian, 2019, Aguiar and Serrano, 2021, Halevy
and Mayraz, 2022).
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2017, Kitamura and Stoye, 2018). However, RUM cannot take advantage of the longitudi-

nal variation of choice available in many datasets, and it may have limited empirical bite

(Im and Rehbeck, 2021). By considering a richer primitive, we can simultaneously relax the

assumption of a stable utility function over time implicit in Afriat’s framework while provid-

ing a more informative test of stochastic utility maximization than in McFadden-Richter’s

framework.

Our first revealed preference characterization of DRUM is analogous to the RUM charac-

terization in McFadden-Richter’s work. We exploit the fact that DRUM is associated with

a finite mixture of demand profiles in time. We obtain results analogous to Kitamura and

Stoye (2018) (henceforth KS) and McFadden and Richter (1990), Kawaguchi (2017) with

a dynamic version of the Axiom of Stochastic Revealed Preferences. This characterization

lends itself to statistical testing using results in KS. Also, our characterization can be used for

nonparametric counterfactual analysis. In a Monte Carlo study, we show that the statistical

test of KS applied to our characterization of DRUM performs well in finite samples.

We find the mixture representation of DRUM can be obtained using a Kronecker product

of the mixture representation of RUM for each period.2 This observation is vital to obtain:

(i) computational gains for testing because of the modularity of the mixture representation

that is parallelizable; and (ii) a recursive characterization of DRUM. To provide this char-

acterization of DRUM we prove a generalization of the Weyl-Minkowski theorem for cones

that exploits the recursive structure of the DRUM induced by the Kronecker product. The

Weyl-Minkowski theorem posits that a cone can be described equivalently by a convex com-

bination of its vertices (V-representation) or by its faces (H-representation). KS was the

first to observe that the empirical content of RUM can be expressed as cone restrictions.

In particular, they notice that the H-representation corresponds to what decision theorists

would call an axiomatic characterization of RUM.3 This new mathematical result enables the
2Informally, the mixture representation of RUM can be represented as a matrix whose columns are de-

terministic rational demand types. The analogous matrix for RUM is the Kronecker product of those RUM
matrices.

3In fact, we notice that Block Marschak inequalities are the H-representation of RUM in abstract setups
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conversion of static RUM characterizations to their dynamic analogous using the Kronecker

product structure. We use this result to provide a novel characterization of DRUM using a

recursive version of Block and Marschak (1960) inequalities. We believe that our generalized

Weyl-Minkowski theorem can be helpful beyond DRUM (e.g., models of bounded rationality

such as random consideration (Cattaneo, Ma, Masatlioglu and Suleymanov, 2020) can be

extended in the spirit of DRUM).

The generalized Weyl-Minkowski theorem enables us to provide a novel behavioral condition

that is necessary for consistency of the longitudinal distribution of demand with DRUM (D-

monotonicity). It is also sufficient in a simple-setup: (i) for any finite number of goods and

2 budgets per time period, and (ii) 2 goods and finitely many budgets per time period. D-

monotonicity is computationally simple to check and provides a deeper understanding of the

empirical content of DRUM. It restricts the joint probability of choices in time beyond the

RUM restrictions on marginal distributions in each period. D-monotonicity can be thought of

as a dynamic version of the Weak Axiom of Stochastic Revealed Preference (Bandyopadhyay,

Dasgupta and Pattanaik, 1999, Hoderlein and Stoye, 2014) and a stochastic version of the

Weak Axiom of Revealed Preference (in time series) by Samuelson (1938).

We synthesize the two main paradigms of nonparametric demand analysis, Afriat’s and

McFadden-Richter’s frameworks. Afriat’s framework requires observing a time-series of

choices and budgets of a given consumer and assumes that a consumer maximizes the same

utility function each time. When this assumption about the utility stochastic process being

constant over time is relaxed, there are no empirical implications when observing only a

time-series of choices. However, using a panel, DRUM bounds the share of consumers whose

choices contain a revealed preference violation in the Afriat’s sense. RUM instead requires

observing a cross-section of choices and budgets of a population of consumers. There is no

time dimension in RUM. One can ignore the panel structure, but unfortunately, this approach

misses the potential temporal correlation of utilities. As a result, there are certain panels

with finite discrete choice.
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of choices over budgets that, when marginalized, are consistent with RUM, but not with

DRUM. In other words, ignoring the time dimension of choice may lead to false positives

when testing RUM. Importantly, our setup keeps the same key assumption in McFadden-

Richter’s framework. Namely, that the distribution over utilities in time does not depend on

the budgets that the consumer faces in time.4

Our synthesis is advantageous because it (i) provides more informative bounds on counter-

factual choice due to the richer variation in the panel of choices; (ii) provides a theoretical

justification for marginalizing choices and using the RUM framework; and (iii) clarifies the

role of the constant preferences across time assumption in Afriat’s framework. Fortunately,

our primitive with a longitudinal level of variation is readily available in many consumption

surveys, household scanner datasets, and experimental datasets as documented in Aguiar

and Kashaev (2021).5

The DRUM framework is rich and extends well beyond the Afriat’s and McFadden-Richter

worlds. We cover as special cases: (i) consumption models of errors in the evaluation of utility

(Kurtz-David et al., 2019); (ii) dynamic random expected utility (defined in Frick, Iijima and

Strzalecki (2019)) for choices over portfolios of securities as in Polisson, Quah and Renou

(2020); (iii) static utility maximization in a population (without measurement error) (Aguiar

and Kashaev, 2021); (iv) dynamic utility maximization in a population6 (Browning, 1989,

Gauthier, 2018, Aguiar and Kashaev, 2021); (v) changing utility or multiple-selves models

(Cherchye et al., 2017); and changing-taste modeled with a constant utility in time with an

additive shock (Adams, Blundell, Browning and Crawford, 2015).

DRUM was first defined in Strzalecki (2021) in an abstract domain for discrete choice. Frick

et al. (2019) provide an axiomatic characterization of it for a rich domain with decision

4This assumption can be relaxed in the same spirit of Deb, Kitamura, Quah and Stoye (2021).
5In practice, panels of choices are often pooled in the time dimension to create a cross-section with sufficient

variation of budgets (Deb et al., 2021, Kitamura and Stoye, 2018). In this case, we show that this approach
could lead to false rejections of DRUM due to ignoring the time labels of budgets.

6This requires a redefinition of price to be an effective price that includes an adjustment due to interests
rates as described in Aguiar and Kashaev (2021).
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trees and an expected utility restriction on the stochastic utility process. We provide the

first characterization of DRUM for a consumer choice domain with limited observability on

budgets without requiring any restriction on preferences.

Related Literature. Recent interest in DRUM in finite abstract discrete choice space has

provided partial characterizations of it when the primitive is the joint distribution of choices

across time and with total menu variation. Li (2021) provides an axiomatic characterization

of DRUM (analogous to Block-Marschak (BM) inequalities for RUM Block and Marschak,

1960) for any finite number of time periods, full menu variation but for the cardinality of

the choice set less than or equal to 3. Chambers, Masatlioglu and Turansick (2021) consider

correlated choice, which is the joint distribution of choice on a pair of menus; the choice may

be made by a group instead of a single decision-maker. Some versions of this model can

be considered dynamic choices when a decision-maker’s multiple selves are making decisions.

They did not characterize the problem for the general case with arbitrary cardinality of the

choice set and an arbitrary number of selves. Note that the primitive in both Li (2021) and

Chambers et al. (2021) differs from ours in the general setup. Importantly, in our setup,

the domain of classical consumer choice is endowed with a primitive order (i.e., the vector

order), and preference revelation respects that primitive order. Our DRUM will respect this

primitive order and restrict utilities to be monotone. Another difference is that we deal with a

continuum of choices and limited observability of menus and histories. Finally, Li (2021) and

Chambers et al. (2021) assume comprehensive menu variation that allows them to provide

a BM-like characterization for special cases of their setup, exploiting the nested structure of

menus under the set containment. In contrast, choice sets in our setup are not nested, so we

cannot use the characterizations in Li (2021) and Chambers et al. (2021).

We fully characterize DRUM in the abstract setup of Li (2021) and Chambers et al. (2021)

as a byproduct of our investigation for the general case of finite abstract discrete choice with

full menu variation. We provide a form of recursive BM inequalities that works for cases of

limited observability of menus/choice sets. This characterization is an application of our new
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generalization of the Weyl-Minkowski theorem of convex cones to our setup.

We contribute to the literature that studies random exponential discounting as in Browning

(1989) for the demand setup generalizing the setup of Deb et al. (2021) to a dynamic setup.

Apesteguia, Ballester and Gutierrez-Daza (2022) introduces a heterogeneous risk and time

preferences model with exponential discounting and time separability. The choice domains

studied there differ from our setup. Also, their setup is semiparametric, whereas ours is

nonparametric. Lu and Saito (2018) also studies exponential discounting with a random

discount factor. Choices over consumption streams are made in the first period stochastically.

Aguiar and Kashaev (2021) studies a panel setup but uses a first-order-conditions approach to

deal with some forms of dynamic preferences. Mainly, they allow measurement error, which

can be mapped to trembling-hand or misperception errors. However, their setup does not

allow for changing utility beyond a changing discount factor or marginal utility of income.

Im and Rehbeck (2021) study the McFadden-Richter’s framework and its inability to use a

panel structure. However, they propose to check individual static rationality, like in Afriat’s

framework, as a potential solution. Here, we generalize Afriat’s framework to allow an

individual’s utility to change over time while exploiting the panel structure to obtain more

empirical implications than McFadden-Richter’s framework.

Outine. The paper is organized as follows, Section 2 introduces the setup. Section 3 provides

a characterization of DRUM. In Section 4, we study a simple setup with two budgets in each

time period. Section 5 presents a BM-like representation for DRUM, to do so it provides a

new recursive characterization of convex cones with a tensor structure. Section 6 provides an

extension of the main model that allows endogenous expenditure. Section 7 provides a syn-

thesis of Afriat’s and McFadden-Richter’s setups. Section 8 provides results about dynamic

counterfactual analysis. Section 10 concludes. All proofs can be found in Appendix 11.
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2. Setup

Let X ⊆ R
K
+ be the consumption space with finite K ≥ 2 goods.7 We consider a time window

T = {1, · · · , T} with a finite terminal period T ≥ 1. In each t ∈ T , there are J t < ∞ distinct

budgets

Bt
j =

{

y ∈ X : p′
j,ty = wj,t

}

, j ∈ J t = {1, . . . , J t},

where pj,t ∈ R
K
+ is the vector of prices and wj,t > 0 is the expenditure level.

Define a budget path as an ordered collection of indexes j = (jt)t∈T , jt ∈ J t. Budget paths

encode budgets that were faced by agents in different time periods. Let J be a set of all

observed budget paths.

For every j ∈ J, let Pj be a probability measure on the set of all Borel measurable subsets

of the Cartesian product of T repetitions of X, ×t∈T X. The primitive in our framework is

the collection of all observed Pj, P = (Pj)j∈J . We call this collection a dynamic stochastic

demand system.

Some examples of datasets where a dynamic stochastic demand system is (partially) observed

are: (i) household longitudinal survey datasets (e.g., Encuesta de Presupuestos Familiares in

Spain and Progresa Household Survey in Mexico, Deb et al., 2021, Aguiar and Kashaev, 2021);

(ii) scanner datasets (e.g., Nielsen homescan data, Gauthier, 2018); and (iii) experimental

datasets where subjects need to pick a point on the budget line several times (e.g., experiments

on preferences over giving as in Porter and Adams, 2016). In survey datasets, information

about household purchases is usually collected several times a year (e.g., quarterly). For a

given time period, budget variation across households is driven by spatial (e.g. regional) price

variation (Aguiar and Kashaev, 2021). Scanner datasets contain information about weekly

purchases of consumers. Budget variation in this case is driven by price variation across

stores in each time period (Gauthier, 2021). In experimental settings, often, each subject

7
R

K
+ denotes the set of component-wise nonnegative elements of the K-dimensional Euclidean space RK .

8



faces at random a budget path drawn from the same set of budgets for all subjects. Since

the number of subjects is usually much bigger than the number of budget paths, there are

many subjects facing the same budget path.

Given P, we can define a Dynamic Random Utility Model (DRUM). Let U denote the set

of all continuous, strictly concave, and monotone utility functions that map X to R and

U = ×t∈T U be the Cartesian product of T repetitions of U .

Definition 1 (DRUM). The dynamic stochastic demand P is consistent with DRUM if there

exists a probability measure over U , µ, such that

Pj

(

(

Ot
)

t∈T

)

=
∫

∏

t∈T

1



 arg max
y∈Bt

jt

ut(y) ∈ Ot



 dµ(u)

for all j ∈ J and all Borel measurable Ot ⊆ X, t ∈ T , where u = (ut)t∈T .

When T = 1, DRUM coincides with RUM, where every agent maximizes her utility function

u1 over a budget set and the analyst observes the distribution of consumers’ choices. DRUM

extends RUM by introducing a time dimension with unrestricted preference correlation across

time. The stochastic utility process is captured by µ. Similar to RUM, DRUM does not

restrict the preference heterogeneity in cross-sections (i.e. across agents) and requires µ not

to depend on the budget paths and the alternatives in the consumption space. Afriat’s

framework, in contrast to RUM and DRUM, does not use variation in choices of agents in

cross-sections (i.e., it is directed to the individual level data). Thus, it does not restrict

preferences of individuals in cross-sections. However, Afriat’s framework, in contrast to

DRUM, imposes a strict restriction that preferences are perfectly correlated across time (i.e.

ut = us µ − a.s. for all t, s ∈ T ). We formalize these connections between RUM, Afriat’s

framework, and DRUM in Section 7.

Example 1 (Dynamic Random Cobb-Douglas Utility). Let K = 2 and ut(y1, y2) = yαt

1 y
(1−αt)
2 .

The utility parameter αt is random and is such that αt = max{min{αt−1 + ǫt, 1}, 0}, where

9



ǫts are independent identically distributed mean-zero random innovation with variance σ2

and α1 ∈ [0, 1]. Note that αts are correlated across time. If σ2 = 0, αt does not change

over time, thus, the consumer share of her wealth in each good remains stable in time. The

dynamic stochastic demand generated by this utility function is consistent with DRUM as

long as (αt)t∈T is independent of prices and income.

Example 2 (Adams et al., 2015). For a deterministic utility v : X → R, the random utility

at time t ∈ T is given by ut(x) = v(x)+α′
tx, where αt is the random vector supported on R

K .

The dynamic stochastic demand generated by this utility unction is consistent with DRUM

if αt is independent of prices and income.

In the two examples above, as well as in the examples in Section 3, we maintain the as-

sumption that the distribution of preferences does not depend on prices and income. This

exogeneity assumption is relaxed in Section 6. There we extend the main model to endog-

enize expenditure. This allows us to connect our setup with the possibility of savings and

intertemporal consumption and discounting in the sense of Browning (1989). We provide

this example below.

Example 3 (Consumption Smoothing with Income Uncertainty). Consider a consumer with

random income stream y = (yt)t∈T who maximizes the expected flow of instantaneous, con-

cave, locally nonsatiated, and continuous utilities, u, given the budget constraints, the dis-

count factor δ, history of incomes captured by information It, and initial level of savings s0.

That is, at every time period τ the consumer solves

max
{cτ (·),sτ (·)}τ=t,...,T

E

[

T
∑

τ=t

δτ−tu(cτ(y))

∣

∣

∣

∣

Iτ

]

subject to

p
′

τ cτ (y) + st(y) = yτ + (1 + rτ )sτ−1(y),

where the expectation is taken with respect to y. The sequences of consumption and saving

10



(policy) functions (ct(·))t∈T and (st(·))t∈T fully describe the consumption and saving decisions

of the consumer. In addition, we restrict these functions to depend only on the income history.

That is, for all t, ct(y
′) = ct(y) and st(y

′) = st(y) for all y and y′ such that y′
τ = yτ for all

τ ≤ t.

The Bellman equation for this problem is

Wt−1(st−1) = max
c

[

u(c) + δE
[

Wt(yt + (1 + rt)st−1 − p′
tc)

∣

∣

∣

∣

It

]]

,

where Wt is the value function at time period t. Thus, one can define the state-dependent

utility function as

v̂t(x, st−1) = u(x) + δE
[

Wt(yt + (1 + rt)st−1(y) − p′
tc)
∣

∣

∣

∣

It

]

.

Correlation in income across time would generate correlation between {v̂t}t∈T . We show

in Section 6 that if we normalize consumption by the expenditure in each time period this

example can be mapped to DRUM.8 In addition, one has to make make the standard as-

sumptions that different individuals have different u, δ, and y, and crucially that their joint

distribution does not depend on prices. Normalization of consumption is important because

without it this example is not consistent with DRUM because of the dependence of vt on

expenditure/income through savings.

3. Characterization of DRUM

Here we provide a characterization of rationalizability by DRUM when P is observed (es-

timable). The main result in this section will be an analogue of the McFadden-Richter’s and

8This normalization is analogous to the one used in the static problem in Deb et al. (2021).
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KS’s results for RUM.

3.1. Patches

Monotonicity of the utility functions generates choices on the budget line. In the RUM

setting, KS and Kawaguchi (2017) showed that to establish that P is consistent with DRUM

all possible Borel sets do not need to be checked. Stochastic rationalizability by RUM only

depends on the probability of certain regions of the budget lines called patches.

For any t ∈ T and j ∈ J t, let {xt
i|j}i∈It

j
, It

j = {1, . . . , I t
j}, denote a finite partition of Bt

j

(each element of the partition is indexed by i).

Definition 2 (Patches). For every t ∈ T , let
⋃

j∈J t{xt
i|j} be the coarsest partition of

⋃

j∈J t Bt
j

such that

xt
i|j

⋂

Bt
j′ ∈ {xt

i|j, ∅}

for any j, j′ ∈ J t and i ∈ It
j . A set xt

i|j is called a patch. If xt
i|j ⊆ Bt

j′ for some i and j 6= j′,

then xt
i|j is called an intersection patch.

By definition, patches can only be strictly above, strictly below, or on budget planes. A

typical patch belongs to one budget plane. However, intersection patches always belong to

several budget planes. The case for one time period, K = 2 goods and J t = 2 budgets is

depicted in Figure 1. Note that by definition {xt
i|j} is a partition of Bt

j and I t
j is the number

of patches that form budget Bt
j.

Given a budget path j ∈ J, a choice path is an array of patches xi|j =
(

xt
it|jt

)

t∈T
for some

collection of indexes i = (it)t∈T such that it ∈ It
jt

for all t. Similar to a budget path, a choice

path encodes choices of an agent in a given sequence of budget sets she faced. The set of all

possible choice path index sets i, given the budget path j, is denoted by Ij. Let

ρ
(

xi|j

)

= Pj

(

xi|j

)

12



y1

y2

xt
3|1

xt
1|2

xt
2|1

xt
1|1

xt
2|2

Bt
1

Bt
2

Figure 1 – Patches for the case with K = 2 goods and J t = 2 budgets. The only intersection
patch is xt

3|1, which is the intersection of Bt
1 and Bt

2.

denote the fraction of agents who pick from a choice path xi|j given a budget path j. Hence,

ρ
(

xi|j

)

≥ 0 and
∑

i∈Ij
ρ
(

xi|j

)

= 1.

The main building block of our framework is the vector representation of P

ρ =
(

ρ
(

xi|j

))

j∈J,i∈Ij

.

The vector ρ represents the distribution over finitely many patches and contains all the

necessary information needed to determine whether P is consistent with DRUM.

Given the finite set of patches, let a preference profile be r = (rt)∈T , where rt is a linear order

defined on the set of patches available at time t,
⋃

j∈J t,i∈It
j
xt

i|j . Given the preference profile

r, we can encode choices in different time periods and budgets in a vector ar as

ar = (ar,i,j)j∈J,i∈Ij
,

with ar,i,j = 1 if the patch xt
it|jt

is the best patch in Bt
jt

according to rt for all t ∈ T and

ar,i,j = 0 otherwise. Denote Rt is the set of (strict) rational preferences in a given time

period t ∈ T . The set of dynamic rational preference profiles R is the set of all profiles of

13



preferences r for which there exists ur = (ut
r)t∈T ∈ U such that

ar,i,j = 1 ⇐⇒ ∀t ∈ T , arg max
x∈Bt

jt

ut
r(x) ∈ xit|jt

.

We form matrix AT by stacking the column vectors ar for all preference profiles in r ∈ R.

The dimension of this matrix is dρ × |R|, where dρ is the length of vector ρ. This matrix will

be used to provide a characterization of DRUM that is amenable to statistical testing.

The next axiom is the analogue of the McFadden-Richter’s axiom for (static) stochastic

revealed preferences (Border, 2007) and will provide a different characterization of DRUM.

Definition 3 (Axiom of Dynamic Stochastic Revealed Preference, ADSRP). A vector rep-

resentation ρ satisfies ADSRP if for every finite sequence of pairs of budget and choice paths

(including repetitions), k, {(ik, jk)} such that jk ∈ J and ik ∈ Ijk

∑

k

ρ
(

xik|jk

)

≤ max
r∈R

∑

k

ar,ik,jk
.

The next theorem provides a full characterization of DRUM. Let ∆L =
{

y ∈ R
L+1
+ :

∑L+1
l=1 yl = 1

}

denote the L-dimensional simplex.

Theorem 1. The following are equivalent:

(i) The dynamic stochastic demand P is consistent with DRUM.

(ii) There exists ν ∈ ∆|R|−1 such that ρ = Aν.

(iii) There exists ν ∈ R
|R|
+ such that ρ = Aν.

(iv) The vector representation ρ satisfies the ADSRP.

The main part of the proof of Theorem 1 is based on the fact that, without loss of generality, P

can be reduced to a demand that assigns mass only to the representative elements of patches

14



(e.g., geometric centers) along a choice path. Then the equivalence of (i)-(iv) is analogous

to proof for RUM in McFadden and Richter (1990), McFadden (2005), KS, and Kawaguchi

(2017).

Theorem 1(iii) is amenable to statistical testing using the test developed in KS. However,

the number of columns in AT grows exponentially with T . Thus, even if ones uses the tools

of Smeulders, Cherchye and De Rock (2021), testing DRUM may seem impossible for even

relatively small T . The next lemma shows that the computational complexity of computing

AT , T ≥ 1 does not grow that much relatively to the computation complexity of computing

A1 (i.e., testing DRUM is not much harder than testing RUM).

Lemma 1. Let At be matrix constructed under the assumption that T = {t}. That is, At is

the matrix encoding static rational types at time t. Then AT = ⊗t∈T At up to permutation of

its rows, where A1 ⊗ A2 indicates the Kronecker product of matrices A1 and A2.

Proof. Note that the k-th and the l-th columns of A1 and A2, a1
k and a2

l , encode the choices

of particular types of consumers at time t = 1 and t = 2 (i.e., their choices in each budget

at t = 1 and t = 2). Since there are no restrictions across t on these deterministic types, we

can generate the (k, l)-type, a1
k ⊗ a2

l that encodes what is picked in pairs of budgets where

each budget is taken from two different time periods. Next, if we take some column from A3

we can repeat the above step and obtain a composite type for three time periods. Repeating

this exercise T times for all possible combinations of columns will lead to a matrix that is

equal to AT up to a permutation of rows. �

Lemma 1 substantially simplifies the computation of AT given that one can use the methods

in KS and Smeulders et al. (2021) to construct At (or its approximation). In instances where

the budget structure is such that At = At′
for t 6= t′ significant computational savings are

achieved. Note that At = At′
can occur without budgets in t and t′ being the same. In

fact, the matrix At depends only on the intersection structure induced by the budgets at t

and not on the specific prices. This will become more transparent as we provide examples
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in the next section. Lemma 1 also allows exploiting sparsity because the Kronecker product

propagates any zero entry in At. The Kronecker product structure also illustrates that DRUM

is modular because the structure of AT is built from its static components. We can parallelize

the computation of AT . This recursivity or modularity is heavily exploited to obtain new

theoretical results in the next sections including a recursive characterization of DRUM.

Unfortunately, the DRUM characterization in Theorem 1 does not provide an intuitive un-

derstanding of the behavioral implications of DRUM. The same is also true of the current

characterization of RUM in the demand setup. Nevertheless, the recursive or modular struc-

ture of DRUM is useful to take our characterization to data. In the next sections, we provide

an intuitive characterization of DRUM for a setting with two budgets per time period and a

general recursive formulation for settings with many time periods and many budgets. These

characterizations demonstrate that DRUM provides additional implications in longitudinal

data than those in RUM. Also, it will become apparent that requiring consistency with

(static) RUM for all conditional and marginal probabilities is not enough. In fact, the new

conditions will affect the joint distribution P.

4. The Simple-Setup: 2 budgets per time period

In this section, we illustrate our setup and Theorem 1 in the environment with two budgets

in each time period Bt
1 and Bt

2 such that Bt
1 ∩Bt

2 6= ∅ and w1,t/p1,t,K > w2,t/p2,t,K for all t ∈ T .

To simplify the analysis, we assume that the intersection patches are picked with probability

zero. Thus, in each time period there are four patches xt
1|1, xt

2|1, xt
1|2, and xt

2|2 (see Figure 2 for

a graphical representation of the case with K = 2 goods).9 We call choice path configurations

implied by these 4 patches the simple-setup choice paths. An example of a budget path for

9Formally, xt
1|1 = {y ∈ Bt

1 : p′
2,ty > w2,t}, xt

2|1 = {y ∈ Bt
1 : p′

2,ty < w2,t}, xt
1|2 = {y ∈ Bt

2 : p′
1,ty < w1,t},

and xt
2|2 = {y ∈ Bt

2 : p′
1,ty > w1,t}.
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T = 2 is (2, 1) (i.e. B1
2 and B2

1), an example of a choice path in this budget path is
(

x1
1|2, x2

1|1

)

.

Conditional on the budget path, the total probability of all possible choice paths is equal to

1 (i.e., ρ
((

x1
1|2, x2

1|1

))

+ ρ
((

x1
2|2, x2

1|1

))

+ ρ
((

x1
1|2, x2

2|1

))

+ ρ
((

x1
2|2, x2

2|1

))

= 1).

In this setup, there are 3 rational demand types per time period that are described in Ta-

ble 1.10 Each demand type θt
i,j picks i-th patch in budget Bt

1 and j-th patch in budget Bt
2 at

time t.

y1

y2

x1
1|2

x1
2|1

x1
1|1

x1
2|2

B1
1

B1
2

y1

y2

x2
1|2

x2
2|1

x2
1|1

x2
2|2

B2
1

B2
2

Figure 2 – Simple-setup for K = 2 goods and no intersection patches.

Type/Budget Bt
1 Bt

2

θt
1,1 xt

1|1 xt
1|2

θt
1,2 xt

1|1 xt
2|2

θt
2,2 xt

2|1 xt
2|2

Table 1 – Choices of 3 rational types in budgets Bt
1 and Bt

2 at time t.

Now we can write down the associated AT matrix. Note that since, there are two intersecting

budgets in every time period, At = At′
for all t, t′ ∈ T . Thus, by Lemma 1, we just need to

compute the matrix At for one time period. The rows of this matrix correspond to the choice

paths (4 possibles paths). We display the matrix At in Table 2 (for readability, we replace 0

by the symbol “−′′).

Using, At we can write down the matrix AT for a time window of any size. For illustration

purposes, we write it down below for T = 2 (i.e., AT = A1 ⊗ A2). In this case, since the

10The idea of writing demand types on patches was developed in KS and we use the convenient notation
developed in Im and Rehbeck (2021).
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θt
1,1 θt

1,2 θt
2,2

xt
1|1 1 1 -

xt
2|1 - - 1

xt
1|2 1 - -

xt
2|2 - 1 1

Table 2 – The matrix At for 2 budgets. “−′′ corresponds to 0.

(θ1
1,1, θ2

1,1) (θ1
1,1, θ2

1,2) (θ1
1,1, θ2

2,2) (θ1
1,2, θ2

1,1) (θ1
1,2, θ2

1,2) (θ1
1,2, θ2

2,2) (θ1
2,2, θ2

1,1) (θ1
2,2, θ2

1,2) (θ1
2,2, θ2

2,2)
(

x1
1|1, x2

1|1

)

1 1 - 1 1 - - - -
(

x1
1|1, x2

2|1

)

- - 1 - - 1 - - -
(

x1
1|1, x2

1|2

)

1 - - 1 - - - - -
(

x1
1|1, x2

2|2

)

- 1 1 - 1 1 - - -
(

x1
2|1, x2

1|1

)

- - - - - - 1 1 -
(

x1
2|1, x2

2|1

)

- - - - - - - - 1
(

x1
2|1, x2

1|2

)

- - - - - - 1 - -
(

x1
2|1, x2

2|2

)

- - - - - - - 1 1
(

x1
1|2, x2

1|1

)

1 1 - - - - - - -
(

x1
1|2, x2

2|1

)

- - 1 - - - - - -
(

x1
1|2, x2

1|2

)

1 - - - - - - - -
(

x1
1|2, x2

2|2

)

- 1 1 - - - - - -
(

x1
2|2, x2

1|1

)

- - - 1 1 - 1 1 -
(

x1
2|2, x2

2|1

)

- - - - - 1 - - 1
(

x1
2|2, x2

1|2

)

- - - 1 - - 1 - -
(

x1
2|2, x2

2|2

)

- - - - 1 1 - 1 1

Table 3 – The matrix AT for 2 time periods with 2 budgets per period. “−′′ corresponds to 0.

demand types correspond to a preference type, a demand profile (θ1
i,j , θ2

k,l) (i.e., θ1
i,j in the first

time period and θ2
k,l in the second one) corresponds to a preference profile over the choice

path (9 preference profiles). The rows of this matrix correspond to the choice paths (16

possibles paths).

4.1. D-monotonicity

In this section, we introduce a new behavioral restriction on ρ that is one of the two conditions

that characterize DRUM in the simple-setup. We first introduce a static notion of dominance

among patches.

Definition 4 (Patch-Revealed Dominance). We say that patch xt
i|j is revealed dominant to

xt
i′|j′ or xt

it|jt
≻D xt

i′
t|j′

t
if for all y ∈ xt

i|j and y′ ∈ xt
i′|j′ (i) pj,ty > pj,ty

′ and (ii) pj′,ty > pj′,ty
′.

Patch-revealed dominance captures the idea that all elements in the dominant patch are
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directly revealed preferred (in the Afriat’s sense) to the dominated patch, and that all the

elements of the dominated patch are not directly revealed preferred (in the Afriat’s sense)

to the elements of the dominant patch. We can visualize this ordering in Figure 2, where

x1
1|1 ≻D x1

1|2 and x2
2|2 ≻D x2

2|1.

Let xi|j ↓t xt
i′
t|j′

t
denote a choice path where the t-th component of xi|j was replaced by xt

i′
t|j′

t
.

We show that if ρ is consistent with DRUM and xt
i′
t|j′

t
≻D xt

it|jt
then

ρ(xi|j ↓t xt
i′
t|j′

t
) ≥ ρ(xi|j).

This monotonicity is intuitive, since DRUM implies that more DMs achieve their maximum

at the dominant choice path.11

We illustrate the necessity for the simple case where T = 1, then AT ν = ρ can be rewritten

as

ν1 + ν2 = ρ(x1
1|1), ν3 = ρ(x1

2|1),

ν1 = ρ(x1
1|2), ν2 + ν3 = ρ(x1

2|2).

Thus, if there is a nonnegative solution of the system AT ν = ρ, then the following two

inequalities have to be satisfied

0 ≤ ν2 = ρ(x1
1|1) − ρ(x1

1|2),

0 ≤ ν2 = ρ(x1
2|2) − ρ(x1

2|1).

These inequalities mean that the patches x1
1|1 and x1

2|2 should have a bigger probability mass

than patches x1
1|2 and x1

2|1. Moreover, patch x1
1|1 (x1

2|2) dominates patch x1
1|2 (x1

2|1).

For T ≥ 2, DRUM implies that ρ satisfies a new notion of dynamic monotonicity. For

11It should be clear we can use the static patch dominance notion to order choice paths when they differ
only in one patch in a fixed time period.
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illustrative purposes, set T = 2. Then we get the new condition by exploiting the recursive

structure of the matrix AT (recall that A1 = A2 in the simple-setup):

ρ = AT ν = A1 ⊗ A2ν =

























A1 A1 0

0 0 A1

A1 0 0

0 A1 A1









































ν1
1

ν1
2

ν1
3

















=

























A1(ν1
1 + ν1

2)

A1ν1
3

A1ν1
1

A1(ν1
2 + ν1

3)

























.

Similarly to the case with T = 1, since entries of A1 are either 0 or 1, we can derive the

following system of equations

A1ν1 =
[

ρ1
1|1 − ρ1

1|2

]

,

A1ν2 =
[

ρ1
2|2 − ρ1

2|1

]

,

where ρ1
i|j is a vector of all probabilities that correspond to all choice paths that contain patch

x1
i|j. For example,

ρ1
1|1 =

























ρ
((

x1
1|1, x2

1|1

))

ρ
((

x1
1|1, x2

2|1

))

ρ
((

x1
1|1, x2

1|2

))

ρ
((

x1
1|1, x2

2|2

))

.

























Repeating the argument for the case T = 1, from A1ν1 =
[

ρ1
1|1 − ρ1

1|2

]

, we can derive that

0 ≤
[

ρ
((

x1
1|1, x2

1|1

))

− ρ
((

x1
1|2, x2

1|1

))]

−
[

ρ
((

x1
1|1, x2

1|2

))

− ρ
((

x1
1|2, x2

1|2

))]

. (1)

Note that similar to the argument for the case of T = 1, it can be shown that

ρ
((

x1
1|1, x2

1|1

))

− ρ
((

x1
1|2, x2

1|1

))

≥ 0,

ρ
((

x1
1|1, x2

1|2

))

− ρ
((

x1
1|2, x2

1|2

))

≥ 0.
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Thus, Inequality (1) imposes a restriction on how the distribution over patches can grow. In

particular, it implies that the increase in probability caused by switching from patch x1
1|2 to

the dominant patch x1
1|1 is bigger if the patch in the second time period, (x2

1|1, dominates

x2
1|2). In other words, there is some form of complementarity between dominant patches in

different time periods. The above arguments can be used in cases when T > 2. However, we

would need to work with higher-order differences.

Next, we introduce the difference operator.

Definition 5 (Difference operator). For any t, xt
i′
t|i′

t
, and, xi|j, let D

(

xt
i′
t|j′

t

)

[·] be a linear

operator such that

D
(

xt
i′
t|j′

t

) [

f(xi|j)
]

= f
(

xi|j ↓t xt
i′
t|j′

t

)

− f
(

xi|j

)

for any f that maps choice paths to reals.

The D operator applied to ρ calculates the difference in ρ when only one patch in a choice

path was replaced. When the operator is applied twice to two different time periods, it

computes the difference in differences. That is, for t1 6= t2

D
(

xt2

i′
t2

|j′
t2

)

D
(

xt1

i′
t1

|j′
t1

)

[

f
(

xi|j

)]

= D
(

xt2

i′
t2

|j′
t2

) [

f
(

xi|j ↓t xt1

i′
t1

|j′
t1

)

− f
(

xi|j

)

]

=

D
(

xt2

i′
t2

|j′
t2

)

f
(

xi|j ↓t xt1

i′
t1

|j′
t1

)

− D
(

xt2

i′
t2

|j′
t2

)

f
(

xi|j

)

t =

[

f
(

xi|j ↓t xt1

i′
t1

|j′
t1

↓t xt2

i′
t2

|j′
t2

)

− f
(

xi|j ↓t xt2

i′
t2

|j′
t2

)]

−
[

f
(

xi|j ↓t xt1

i′
t1

|j′
t1

)

− f
(

xi|j

)

]

,

where the second equality uses linearity of D
(

xt2

i′
t2

|j′
t2

)

.

Similarly, we can apply D any K number of times. Let

T =
{

(tk)K

k=1 : tk ∈ T , tk < tk+1, K ≤ T
}

be a collection of all possible increasing sequences of the length of at most T . For any t ∈ T
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and any xt
i′|j′ =

(

xt
i′
t|j′

t

)

t∈t
define

D
(

xt
i′|j′

) [

f
(

xi|j

)]

= D
(

xtK

i′
tK

|j′
tK

)

. . . D
(

xt2

i′
t2

|j′
t2

)

D
(

xt1

i′
t1

|j′
t1

)

[

f
(

xi|j

)]

,

where K is the length of t.

Definition 6 (D-monotonicity). We say that ρ is D-monotone if for any t ∈ T , xt
i′|j′, and

any xi|j such that xt
i′
t|i′

t
≻D xt

it|it
for all t ∈ t

D
(

xt
i′|j′

) [

ρ
(

xi|j

)]

≥ 0.

The notion of D-monotonicity builds a bridge between different time periods. It is a shape

restriction on ρ since it captures the idea that as we switch to a dominant patch at one

time period, the fraction of individuals being in this new choice path should increase. D-

monotonicity is the generalization of the Weak Axiom of Stochastic Revealed Preference

(WASRP) from the static case of RUM to our setup (Bandyopadhyay et al., 1999). More

precisely, since we impose monotonicity on the support of random utility process, for the

static case, our condition coincides with the stochastic substitutability condition in Bandy-

opadhyay, Dasgupta and Pattanaik (2004).12 For the case of two budgets, WASRP also a

sufficient condition (Hoderlein and Stoye, 2014).13 For the case of T ≥ 2, D-monotonicity

implies that the marginal impact in ρ of inserting a dominant patch in a given choice path is

marginally increasing each time the D operator is applied to ρ. We highlight that Dasgupta

and Pattanaik (2007) has shown that in the static case WASRP implies regularity, but it is

not implied by it, when the domain of choices is not complete. This observation translates

to the dynamic case as well.14

12Notice that in our setup we put zero measure on intersection patches whereas Bandyopadhyay et al.
(2004) do not.

13D-monotonicity in the static case for the case of 2 goods, was shown to be also sufficient in Hoderlein
and Stoye (2015).

14In that regard D-monotonicity is not implied by any of the conditions derived in Li (2021) or Chambers
et al. (2021), that require complete menu variation and use generalizations of the static regularity conditions
for the dynamic or correlated case.
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4.2. Stability

In this section, we introduce the second condition needed for the characterization of DRUM

in the simple-setup.

Definition 7 (Stability). We say that ρ is stable if
∑

i∈It
j
ρ
(

xi|j

)

is the same for all j ∈ J t

for any t ∈ T and xi|j.

Stability means that the marginal distribution of choices in any t does not depend on the

budget set in any other t′ 6= t. Under stability, the marginal distribution of choices of

consumers will not change due to the budget the consumers faced in the past or the budget

the consumers will face in the future. Recall, we have assumed that the stochastic utility

process does not depend on the budgets. This condition is an implication of that assumption.

Stability was first defined in Strzalecki (2021).

4.3. Simple-setup characterization

We are ready to state our main result in this section.

Theorem 2. For the simple-setup, the following are equivalent:

(i) P is rationalized by DRUM.

(ii) ρ is D-monotone and stable.

Necessity is easy to verify. Sufficiency is proved constructively. Theorem 2 is not just a

restatement of the Weyl-Minkowski Theorem, as stability and D-monotonicity correspond to

the explicit H-representation of the cone restrictions implied by Aν = ρ for some ν ∈ R
|R|+

(V-representation). The H-representation is obtained by direct computation and can be

directly used for testing DRUM in the simple setup. This characterization also provides the

reader with a helpful intuition about the empirical content of DRUM.
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x2
1|1 x2

2|1 x2
1|2 x2

2|2

x1
1|1 3/4 - 3/4 -

x1
2|1 - 1/4 1/4 -

x1
1|2 - 1/4 1/4

x1
2|2 3/4 - 3/4 -

Table 4 – Matrix representation of ρ for T = 2 that violates D-monotonicity, but satisfies simple
stability. “-” corresponds to 0

Next, we provide an example of ρ that violates D-monotonicity, but it satisfies stability. This

example shows the two conditions are logically independent.

Example 4 (Violation of D-monotonicity). Consider the stochastic demand presented in Ta-

ble 4. It satisfies stability. However, it fails to satisfy D-monotonicity because ρ
((

x1
1|2, x2

1|1

))

−

ρ
((

x1
1|2, x2

1|2

))

= −1
4

because x2
1|1 ≻D x2

1|2.

Another example of a stochastic demand that fails both conditions of the simple setup is

discussed in Section 7.

We conclude this section by stating a by-product of the proof of Theorem 2.

Corollary 1. For the simple-setup if ρ = AT ν = AT ν ′ for some ν, ν ′ ∈ ∆|R−1|, then ν = ν ′.

Corollary 1 means DRUM has a uniqueness property at the ordinal level for the simple-setup.

This result may not hold in settings with 3 or more budgets, even for one time period (see,

Example 3.2 in KS).

5. H-Representation of the General Model and Recursive

Characterization of DRUM

In this section, we go back to the general primitive and study the necessity of suitable

generalizations of the restrictions on behavior introduced in the simple-setup for consistency
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with DRUM. Moreover, we show how to convert the axiomatic characterization of (static)

RUM (when they correspond to cone constraints) to a recursive characterization of DRUM.

We end up the section by providing a characterization of RUM via recursive BM inequalities.

5.1. H and V-representations

Note that Theorem 1.(iii) states that to test whether P is consistent with DRUM it is enough

to check whether the implied ρ belongs to a convex cone

{AT v : v ≥ 0} .

This is the so called V-representation of the cone. The Weyl-Minkowski theorem states that

there exists an equivalent representation of it (the H-representation) via some matrix BT :

{t : BT t ≥ 0} .

The V-representation states that the observed distribution over patches is a finite mixture

of deterministic types. Construction of matrix AT is a straight-forward but computationally

demanding problem (Kitamura and Stoye, 2018, Smeulders et al., 2021).15 Unfortunately,

the V-representation does not give any direct restrictions on the observed ρ. As a result,

one can not derive any helpful intuition about the empirical content of DRUM using the

V-representation. In contrast, the H-representation delivers direct, easy-to-test, tractable,

and intuitive restrictions on the data (see Section 4). But construction of BT from AT is a

nontrivial task that may become computationally intractable even for moderate T since the

number of columns of AT grows exponentially with T . In Lemma 1, we showed that one

15KS were the first to notice that in the static case checking if a stochastic demand is consistent with
RUM amounts to checking if its vector representation belongs to a convex cone. They also introduced the
Weyl-Minkowski theorem to the study of RUM in economics. Our insight is done for the new DRUM but its
inspired by their observation.

25



could use the recursive structure of AT (i.e., AT = AT −1 ⊗ AT ) to simplify its construction

substantially. In this section, we show that the same intuition carries over to the construction

of BT : one can move from the H-representation of RUM to the H-representation of DRUM

with almost no computational cost.

Our next result generalizes the Weyl-Minkowski theorem in a direction that is useful for our

recursive setup.

Theorem 3. If
{

Ktv : v ≥ 0
}

=
{

z : Ltz ≥ 0
}

for all t ∈ T , then

{(

⊗t∈T Kt
)

v : v ≥ 0
}

⊆
{

z :
(

⊗t∈T Lt
)

z ≥ 0
}

.

If, moreover, Kt has full row rank for all t, then these sets are equal.

To the best of our knowledge, Theorem 3 is a new result in convex analysis and of possible

independent interest beyond economics. It allows one to easily construct H-representations

of cones generated by matrices constructed using Kronecker products from H-representations

of their one-time counterparts. Unfortunately, this theorem cannot be directly applied to our

setting.

5.2. H-representation of AT

Theorem 3 gives necessary conditions for building the H-representation of DRUM from its

static components (i.e. Kt = At and Lt = Bt). However, since At is never of full row rank,

we can not establish full equivalence using Theorem 3. The rank is not full because of the

“adding-up” constraint–one patch has to be picked from every budget. Hence, the sum of all

rows belonging to the same budget will give the row of ones. For example, in the simple-setup
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(2 budgets per time period),

At =

























1 1 0

0 0 1

1 0 0

0 1 1

























.

So the sum of the fist two rows is equal to the sum of the last two rows. However, Theorem 3

is more general than we need for the recursive characterization of DRUM as the following

theorem demonstrates. Let Bt be the matrix from the H-representation of a cone generated

by At.

Theorem 4. Assume that
∑

jt∈J t(I t
jt

− 1) ≤ |Rt| − 1 for all t ∈ T . Then P is rationalized

by DRUM if and only if (i) ρ is stable (ii) (⊗t∈T Bt) ρ ≥ 0.

Condition
∑

jt∈J t(I t
jt

− 1) ≥ |Rt| − 1 imposes restrictions on the size of matrix At. It is

satisfied in simple-setup and all the examples we are aware of. We conjecture this condition

to be true always. Note that stability is a set of equality restrictions on ρ. Since any equality

restriction can be represented as two inequality restrictions, Theorem 4 allows us to obtain the

H-representation of DRUM from the H-representation of its static components recursively

for any time window. In other words, one just needs to derive the H-representation of RUM

and then easily convert it to the dynamic setting and add the constraints implied by stability.

This delivers a substantial gain over the direct computation of the H-representation since

the existing numerical algorithms transforming V-representations to H-representations are

known to work for small and moderate-size problems only. That is, computational complexity

of the dynamic problem is only bounded by the computational complexity of the static one.

We highlight that the general characterization of (static) RUM for our demand setup via

H-representation is yet to be discovered (Stoye, 2019). Only special cases are fully solved:

the case of 2 budgets (Hoderlein and Stoye, 2014), and the case of 3 goods and 3 bud-

gets (Kitamura and Stoye, 2018). This stands in contrast with the abstract setup–without
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1 1 1 1 1 1 1 1 1 1 1 1 - - - - - - - - - - - - - xt
1|1

- - - - - - - - - - - - 1 1 1 1 1 - - - - - - - - xt
2|1

- - - - - - - - - - - - - - - - - 1 1 1 1 1 - - - xt
3|1

- - - - - - - - - - - - - - - - - - - - - - 1 1 1 xt
4|1

1 1 1 1 - - - - - - - - 1 1 1 1 - 1 1 - - - 1 1 - xt
1|2

- - - - 1 1 1 1 - - - - - - - - - - - 1 - - - - - xt
2|2

- - - - - - - - 1 1 - - - - - - 1 - - - 1 - - - 1 xt
3|2

- - - - - - - - - - 1 1 - - - - - - - - - 1 - - - xt
4|2

1 - - - 1 - - - 1 - 1 - 1 - - - 1 1 - 1 1 1 1 - 1 xt
1|3

- 1 - - - 1 - - - - - - - 1 - - - - 1 - - - - 1 - xt
2|3

- - 1 - - - 1 - - 1 - 1 - - 1 - - - - - - - - - - xt
3|3

- - - 1 - - - 1 - - - - - - - 1 - - - - - - - - - xt
4|3

Table 5 – At for 3 goods and 3 budgets. “-” corresponds to 0.

monotonicity–and full menu variation solved in Block and Marschak (1960) and Falmagne

(1978). Fortunately, the BM inequalities can be modified in our discretized setup, as we will

see below. Nevertheless, our result implies that once the generic H-representation of RUM

becomes available, the analogous DRUM characterization will also become available.

5.3. Generalization of D-monotonicity for 3 goods and 3 budgets per time period.

Now we showcase how our generalization of the Weyl-Minkowski theorem can be used to take

the H-representation of (static) RUM for the case of 3 goods and 3 budgets and use it to

construct an H-representation for DRUM for any time window. We consider a setup where

each time period has 3 budgets with maximal intersections as in Example 3.2 in KS. The

V-representation in this case is given by matrix At in Table 5.

The H-representation in this case is displayed in Table ??6 (without the nonnegativity and

adding-up constraints). As a consequence of the pattern of intersections, we have that Bt =

Bs for any t, s ∈ T . Then we can establish the following result.

Corollary 2. Let K = 3 and let J t = 3 budgets for all t ∈ T , such that the budgets have a

maximal pattern of intersections, then the following are equivalent:

(i) P with ρ vector representation is consistent with DRUM.
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xt
1|1 xt

2|1 xt
3|1 xt

4|1 xt
1|2 xt

2|2 xt
3|2 xt

4|2 xt
1|3 xt

2|3 xt
3|3 xt

4|3

- - - -1 - - - -1 1 1 1 -
- - - -1 1 - - - 1 - - -
1 - - - 1 - - - - - - -1
1 - - - - - - -1 1 - - -
1 - 1 - -1 - -1 - - - - -
- -1 - -1 1 - 1 - - - - -
- - - - 1 1 - - - -1 - -1
- - -1 -1 - - - - 1 1 - -

Table 6 – The H-representation of RUM for 3 goods and 3 budgets excluding nonnegativity
and adding-up constraints. “-” corresponds to 0.

(ii) For B3 = ⊗t∈T B3
t , B3ρ ≥ 0 and ρ satisfies stability.

The proof of the previous result is direct from Theorem 4 since At in this case is such that

∑

jt∈J t(I t
jt

− 1) = 10 ≤ 24 = |Rt| − 1.

The case of 3 goods and 3 budgets with maximal intersection pattern in budgets is important

because it shows what conditions D-monotonicity is missing. In particular, we can say that

that the last 3 rows of the matrix displayed in Table 6 can be captured by D-monotonicity,

as we will clarify this next. The rest of conditions are new.

Computationally Simple Testable Implications of the General Model.– Note that if

P = (Pj)j∈J is consistent with DRUM, then the stochastic demand system consisting of 2

different budgets paths (Pj, Pj′) would also be consistent with DRUM. Moreover, note that

(Pj, Pj′) form the simple-setup since at every time period there are exactly two budgets. Given

(Pj, Pj′), at every t we can construct the implied four patches, which will be unions of patches

constructed from P. And then check whether the implied distribution over these patches ρj,j′

is D-monotone.

Proposition 1. If P is rationalized by DRUM, then (i) ρ is stable; (ii) for any two different

budget paths j and j′, the implied simple-setup ρj,j′ is D-monotone.

Proof. The proof for necessity of stability follows from the proof of Theorem 2 since it does

not use any features of the simple-setup. Necessity of D-monotonicity for any pair of budget
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paths follows from Theorem 2 and the fact that if P is consistent with DRUM, then any pair

(Pj, Pj′) is consistent with DRUM. �

Stability is applied to the distribution over all patches implied by P. That is, there is no

need to use simple-setup. Stability and D-monotonicity are no longer sufficient in the general

case. Theorem 1 has necessary and sufficient conditions for DRUM consistency but in some

cases, it will be computationally more convenient to check the conditions in Proposition 1.

We also highlight that in stark contrast with the static Weak Axiom of Stochastic Revealed

Preference (Hoderlein and Stoye, 2014), our D-monotonicity condition has more empirical

bite that is increasing with a longer time window T . In that sense, with sufficiently long

panels, we could obtain informative counterfactual bounds on the longitudinal distribution

of demand out-of-sample, using only D-monotonicity. We remark that for the case of K = 2

goods and finitely many budgets per time period applying our results in Proposition 1 for all

possible pairs of budgets paths is a necessary and sufficient test of DRUM.16.

5.4. Characterization of DRUM via recursive Block Marschak inequalities

As we mentioned before a BM-like characterization of RUM in the demand setup does not

exist. Here, we provide a characterization based on the BM inequalities while taking into

account the limited menu variability in the demand setup and the monotonicity of utilities.

We start with the observation that thanks to KS our problem can be discretized, so the

main obstacle we overcome is to deal with the limited observability of choice sets formed by

patches.

Recall that J t denotes the set of observed budgets at time t and every budget jt ∈ Jt forms

a collection of patches that belong to it. Thus, one can think of each budget as a menu of

patches (i.e., consumers choose a patch from a menu {xt
it|jt

}it∈It
jt

). Let Xt = ∪j∈J t{xt
it|jt

}it∈It
jt

be the “virtual” choice set–the set of all patches at time t. Also let J̄ t = {1, 2, . . . , 2|Xt| − 1}

16This is a consequence of Hoderlein and Stoye (2015) and Theorem 4
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be the “virtual” set of budgets such that there is a one-to-one mapping between jt ∈ J̄ t and

a nonempty subset of Xt. We also assume that this mapping is such that the first J t indexes

correspond to observed budgets Bt
j . That is J t is the set of all observed budgets and J̄ t \ J t

is the set of all “virtual budgets” that were not observed in the data. Using this extended

definition of budgets, we can define a set of all (including the observed ones) budget paths

J̄. Note that the set of observed budget paths J is a subset of J̄. Finally, as before, given a

budget path j ∈ J̄, let ρ̄ be a distribution over choice paths i in j. That is, ρ̄
(

xi|j

)

≥ 0 and

∑

i∈Ij
ρ̄
(

xi|j

)

= 1 for all j ∈ J̄. Recall that the observed ρ is defined as

ρ =
(

ρ
(

xi|j

))

j∈J,i∈Ij

.

Similarly, the extended vector representation is denoted by

ρ̄ =
(

ρ̄
(

xi|j

))

j∈J̄,i∈Ij

.

Next we define some properties of ρ̄ that will be needed for our analysis.

Definition 8. We say that ρ̄ agrees with ρ if they coincide on observed budget paths. That

is, ρ̄
(

xi|j

)

= ρ
(

xi|j

)

for all j ∈ J and i ∈ Ij.

This definition captures the idea of extension of ρ to budget paths that are not observed in

the data (i.e. “virtual” budget paths).

Definition 9 (Increasing Utility (IU) Consistency). We say that ρ̄ is IU-consistent if ρ̄
(

xi|j

)

=

0 whenever there exists t ∈ T such that for every y ∈ xit|jt
there exists i′

t ∈ It
jt

and y′ ∈ xi′
t|jt

such that y′ ≥ y.

IU-consistency captures the empirical content of strict monotonicity of the utility functions.

Given that each index j corresponds to a set of patches, let C(j) denote the set of all patches

in budget j. That is, C(jt) = {xit|jt
}it∈It

jt

.
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Definition 10 (BM inequalities). We say that ρ̄ satisfies the BM inequalities if for all t ∈ T ,

j ∈ J̄, and i ∈ Ij

B
t(i, j) =

∑

j′
t:C(jt)⊆C(j′

t)

(−1)|C(j′
t)\C(jt)|ρ̄(xi|j) ≥ 0.

Note that the BM inequalities are linear in ρ̄. Hence, we can construct matrix B̄t with

elements in {−1, 0, 1} such that each row of B̄t corresponds to some t, j ∈ J̄, and i ∈ Ij and

encodes one BM inequality.

With this definitions at hand we are ready to state the two main results of this subsection.

First, a BM characterization of RUM for our demand setup and later an analogous charac-

terization for DRUM.

Lemma 2. Let T = {t}. For a given ρ the following are equivalent:

(i) ρ is consistent with RUM.

(ii) There exists ρ̄ that agrees with ρ, is IU-consistent, and satisfies the BM inequalities,.

(iii) There exists ρ̄ that agrees with ρ, is IU-consistent, and is such that B̄tρ̄ ≥ 0 .

Proof. (i) implies (ii). If ρ is consistent with RUM, then there exists an increasing random

utility function ut distributed according to µ such that µ(arg maxy∈Bt
jt

ut(y) ∈ xit|jt
) = ρ(xit|jt

)

for all jt ∈ J t and it ∈ It
jt

. Using this random ut we can extend ρ to J̄t, so the BM inequalities

are satisfied and the constructed ρ̄ agrees with ρ. It is left to show that ρ̄ is IU-consistent.

Towards a contradiction assume that there exists a collection of patches jt and xit|jt
in it

such that ρ̄(xit|jt
) > 0 and for all y ∈ xit|jt

there exists a patch xi′
t|jt

∈ C(jt) and y′ ∈ xi′
t|jt

such that y′ ≥ y and y′ 6= y. But this is not possible since ut is assumed to be a monotone

function (i.e, ut(y) < ut(y′)), so no monotone function would choose a point in xit|jt
when

better points are available in other patches. This contradiction completes the proof.

(ii) implies (i). Let R̄t be the set of linear orders on Xt. By the result in Falmagne (1978),
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we know that there is a ν ∈ ∆
(

R̄t
)

such that

ρ(xi|j) =
∑

≻∈R̄t

ν(≻)1
(

xi|j ≻ y ∀y ∈ C(j)
)

.

Since ρ is IU-consistent, ν(≻) = 0 for any ≻∈ R̄t that is not an extension of the strict vector

order >. To see this is true, we will prove the contrapositive. Namely, if ν(≻) > 0 for

some ≻∈ R̄t that is not an extension of the strict vector order >, in particular, there exists

y, x ∈ Xt such that x > y yet y ≻ x, then IU-consistency fails for the virtual budget {y, x}.

(ii) is equivalent to (iii). The statement follows from the definition of matrix B̄t. �

In sum, since the BM inequalities with the nonnegativity and adding-up constraints for all

menus provide the H-representation of RUM for the static case and as a direct application

of Theorem 3, we can establish the following result.

Theorem 5. The following are equivalent.

(i) P with a vector representation ρ is consistent with DRUM.

(ii) There exists ρ̄ that agrees with ρ, is IU-consistent, stable, and satisfies (⊗t∈T B̄t)ρ̄ ≥ 0.

Proof. (i) implies (ii). Direct from arguments analogous to those made in Lemma 2, Theo-

rem 3, and Theorem 4.

(ii) implies (i). We break the proof into two steps.

First step. Let R̄ be the set of linear order profiles in ×t∈T Xt, with typical element (≻t)t∈T .

For any ρ̄ such that satisfy (⊗t∈T B̄t)ρ̄ ≥ 0 and stability, we can use the results in Theorem 3

and the results in Theorem 4, to ensure that there exists a ν ∈ ∆(R̄) such that

ρ(xi|j) =
∑

(≻t)t∈T ∈R∗

ν((≻t)t∈T )1
(

xt
it|jt

≻t y ∀y ∈ C(jt) ∀t ∈ T
)

.
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Since ρ is IU-consistent ν((≻t)t∈T ) = 0 for any (≻t)t∈T ∈ R̄ that contains some element ≻t

that is not an extension of the strict vector order >. To see this is true, we will prove the

contrapositive. Namely, if ν((≻t)t∈T ) > 0 for some (≻t)t∈T ∈ R̄ that is not an extension of

the strict vector order >, in particular, there exist y, x ∈ Xt such that x > y yet y ≻ x, then

IU-consistency fails for the virtual budget path that contains the budget {y, x} at time t. �

Theorem 5 is not exactly a H-representation of DRUM. It becomes one when all menus in

J̄ are observed like it is assumed in Chambers et al. (2021), Li (2021). Note, moreover, that

our proof can be used in the environments in Chambers et al. (2021) and Li (2021) without

changes. The vector order could be replaced by any primitive order, including the empty

order such as the abstract setup in those two papers. We generalize the BM inequalities for

the case of unobserved menus. Even if for our primitive this recursive characterization of

DRUM is not an H-representation of DRUM, this characterization has several advantages:

(i) it avoids the computation of matrix AT associated with the V-representation, which can

be computationally burdensome; (ii) it provides additional intuition about the additional

empirical bite of DRUM in comparison with RUM; and (iii) it means DRUM can be tested

with a linear program.

To fully understand the intuition behind the H-representation of DRUM we focus on a

necessary condition implied by it. We define a new set of inequalities we call DRUM-BM.

Definition 11 (DRUM-BM inequalities). We say that ρ̄ satisfies the DRUM-BM inequalities

if for all t ∈ T , j ∈ J̄, and i ∈ Ij, Bt(i, j) ≥ 0, where BT (i, j) = B
T (i, j) and

Bt(i, j) =
∑

j′
t:C(jt)⊆C(j′

t)

(−1)|C(j′
t)\C(jt)|

Bt+1(i, j)

for all t ∈ T \ {T}.

Now we establish the following result.
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Corollary 3. If P with a vector representation ρ is consistent with DRUM then ρ satisfies

the DRUM-BM inequalities.

This result shows that DRUM has a rich set of new constraints beyond what BM inequalities

require in the static case.

6. Endogenous Expenditure with Dynamic Random Augmented Utility

Model–DRAUM

So far, we have assumed that budgets are exogenously given. In particular, the definition of

DRUM requires the probability measure over utility functions to be independent of budgets

(prices and income). This assumption is satisfied in experimental setups such as the one in

Porter and Adams (2016). But this assumption may not be realistic in other setups, mainly,

when saving is possible. In this section, we relax the exogeneity assumption by extending the

results in Deb et al. (2021) to our setup. Our new model will cover the classical consumption

smoothing problem with income uncertainty.

Similarly to DRUM we can define a Dynamic Random Augmented Utility Model (DRAUM).

Let V denote the set of all continuous, strictly concave, and monotone augmented utility

functions that map X∗ = X × R− to R and V = ×t∈T V be the Cartesian product of T

repetitions of V .

Definition 12 (DRAUM). A dynamic stochastic demand P is consistent with DRAUM if

there exists a probability measure over V, η, such that

Pj

(

(

Ot
)

t∈T

)

=
∫

∏

t∈T

1

(

arg max
y∈X

vt(y, −p′
j,ty) ∈ Ot

)

dη(v)

for all j ∈ J and all Borel measurable Ot ⊆ X, t ∈ T , where v = (vt)t∈T .
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While DRUM is an extension of RUM to dynamic settings (i.e., DRUM and RUM coincide

when T = 1), DRAUM is a dynamic extension of the Random Augmented Utility Model

(RAUM) of Deb et al. (2021). For T ≥ 2, the DRAUM does not restrict the dependence of

the augmented utility vt across time and allows full heterogeneity in cross-sections.

Example continued [Consumption Smoothing with Income Uncertainty Example 3 con-

tinued]

Recall the Bellman equation for this problem is

Wt−1(st−1) = max
c

[

u(c) + δE
[

Wt(yt + (1 + rt)st−1 − p′
tc)

∣

∣

∣

∣

It

]]

,

where Wt is the value function at time period t. Thus, one can define the augmented utility

function as

vt(x, −p′x) = u(x) + δE
[

Wt(yt + (1 + rt)st−1(y) − p′
tc)

∣

∣

∣

∣

It

]

.

Notice in this case, the state-dependent utility v̂t depends on st−1 only through the contem-

poraneous expenditure p′x. Correlation in income across time would generate correlation

between {vt}t∈T . If one assumes that different individuals have different u, δ, and y such

that their joint distribution does not depend on prices, then this setup is a particular case of

DRAUM.

Example 3 illustrates that DRAUM covers, as a particular case, the critical case of con-

sumption smoothing with income uncertainty. Note that the correlation among consumption

in time induced by consumption smoothing is rich but covered by DRAUM. In this setup,

the random augmented utility stochastic process is independent of prices because prices are

determined exogenously by supply and demand forces.

Next, we characterize DRAUM by using the fact that consistency with DRAUM is equivalent

to consistency with DRUM for a normalized budget path. A normalized budget path has the

same price path (pj,t)t∈T and income equal to 1 (i.e., Bĵt = {y ∈ X : p′
ĵ,t

y = 1}). Using these

36



normalized budgets, we can define patches in complete analogy to the general case, and then

we can obtain

ρ∗(xi|j) = Pj

(

{

yt ∈ X : yt/p′
j,ty

t ∈ xt
i|j

}

t∈T

)

,

for all i ∈ Ij, j ∈ J. We define the projected vector representation of P as

ρ∗ = (ρ∗(xi,j))i∈Ij,j∈J
.

Similarly to the simple-setup, we rule out the intersection patches. That is, we assume that

for any j and j′

Pj

(

{

yt ∈ X : yt/p′
jt,ty

t ∈ Bt
jt

and yt/p′
j′

t,ty
t ∈ Bt

j′
t

}

t∈T

)

= 0

whenever jt 6= j′
t for some t.

Lemma 3. The following are equivalent:

(i) The dynamic stochastic demand P is consistent with DRAUM.

(ii) There exists ν ∈ R
|R|
+ such that ρ∗ = Aν.

The proof is omitted because it is analogous to our main Theorem 1, using the same logic as in

Theorem 3 in Deb et al. (2021), which shows that in static settings checking consistency with

Random Augmented Utility Model is equivalent to checking consistency with RUM in the

projected stochastic demand with budgets with income equal to 1. Since DRAUM requires

rationalizability by an augmented utility in each period, our result follows immediately.
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7. Relationship with Afriat’s and McFadden-Richter’s frameworks

Using Theorem 1, we proceed to study the implications of DRUM for simpler domains than

a panel dataset. In particular, first we look at a time series with the assumption of constant

utility across time periods as in Afriat’s framework. In this case, DRUM implies that the

(deterministic) Strong Axiom of Revealed Preference (SARP) has to hold in time series. Next

we study cross-sections, as the ones described in McFadden and Richter (1990), McFadden

(2005), that are obtained by marginalizing or pooling panels. Marginalization and pooling

correspond to empirical practices of using cross-sections that corresponds to one or many

time periods, respectively. We show that if P is consistent with DRUM, then any marginal

distribution derived from it is rationalizable by RUM. At the same time, not every DRUM

consistent panel is RUM rationalizable when pooled. Importantly, marginal consistency

with RUM is not sufficient for consistency with DRUM. This means that DRUM has more

empirical bite than RUM in our domain.

7.1. Afriat’s framework

DRUM has no testable implications for a time series without further restrictions. That is, if

we observe Pj for a single budget path j, then there are no testable restrictions of DRUM.

(We need at least two observed budget paths to test DRUM.) However, in Afriat’s framework,

one only needs time-series of choices from budgets to test utility maximization. The reason

for this is that in Afriat’s framework there is an additional assumption on the stochastic

process, namely, that µ is such that ut = us µ − a.s. for all t, s ∈ T . We call this restriction

constancy of the stochastic utility process. Under this restriction, the testable implications

of DRUM in a time series are re-established. We need some preliminaries to formalize this

intuition.
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Definition 13 (Strong Axiom of Revealed Path Dominance, SARPD). For a given j ∈ J,

ρj = (ρ(xi|j))i∈Ij
satisfies SARPD if

ρ
(

xi|j

)

= 0

whenever there is a finite set of patches from xi|j,
{

xtn

itn |jtn

}N

n=1
, such that xt1

it1
|jt1

�∗ xt2

it2
|jt2

�∗

· · · �∗ xtN

itN
|jtN

and xtN

itN
|jtN

�∗ xt1

it1
|jt1

, where xt
it|jt

�∗ xs
is|js

if and only if for some x ∈ xt
it|jt

and y ∈ xs
is|js

and p′
jt

(x − y) ≥ 0.

SARPD requires that the probability of observing a choice path that contains consumption

bundles that form a revealed preference cycle is zero. It is analogous to the Strong Axiom

of Revealed Preferences (SARP) in Afriat’s framework. Using SARPD, we can establish the

following result.

Proposition 2. If P is rationalized by DRUM with µ that satisfies constancy, then ρj satisfies

SARPD for all j ∈ J.

We provide here the proof of Proposition 2 because of its simplicity and interest. Assume

towards contradiction that P is rationalized by DRUM with µ that satisfies constancy and

SARPD is violated for some j. Hence, there exist some yt1 , ytN , and some u ∈ U such

that u
(

yt1

it|jt

)

> u
(

xtN

itn |jtn

)

. However, the violations of SARPD implies that u
(

xt1

it1
|jt1

)

>

u
(

xt1

it1
|jt1

)

which is impossible. In simple words, SARPD rules out the possibility that there

are some individuals in the population that violate SARP. Yet again, constancy of DRUM

is what drives testability in a single budget path or time series. When constancy is relaxed,

we need to obtain cross-sectional variation (i.e., more than one budget path) to reestablish

testability of DRUM.

Note that DRUM bounds above the probability of choice paths that contain a revealed

preference cycle. To see this, we consider again the simple-setup with T = 2. There are two

choice paths that contain a revealed preference cycle:
(

x1
1|2, x2

2|1

)

and
(

x1
2|1, x2

1|2

)

. We focus
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on the first choice path without loss of generality. Using D-monotonicity we know that

ρ
((

x1
1|2, x2

2|1

))

≤ ρ
((

x1
1|1, x2

2|2

))

.

This means that the probability of a choice path that contains a violation of SARP, or a

revealed preference (RP) cycle, is bounded above by the probability of a choice path that

contains no RP cycles. Evidently, D-monotonicity is not exhausted with the previous inequal-

ity, but DRUM restricts the probability of choice paths with RP cycles meaningfully. This

endogenous bounds on the probability of a choice path that contains a revealed preference

cycle has an important advantage with respect to measures of deviations to rationality like

the Critical Cost Efficiency Index (CCEI) (Afriat, 1967), because in that literature it is very

hard to set a threshold on what is the level of deviations from static utility maximization

that is deemed reasonable. In our setup, we convert this problem into a population one

and then just bound endogenously the fraction of consumers that have choices that involve

revealed preference cycles. Importantly, notice that if ρ is degenerate taking values on {0, 1}

for a given budget path then D-monotonicity is equivalent to the Weak Axiom of Revealed

Preference by Samuelson (1938) in Afriat’s framework. To see this, note that the probability

of choice paths with RP cycles of size 2 (i.e., violations of WARP) under the degeneracy of

ρ must be zero.

7.2. Marginal and Conditional Distributions

Given a budget path j, let ρc
t,j and ρm

t,j be the conditional and the marginal distributions over

patches implied by ρj. That is,

ρc
t,j

(

xi|j

)

=
ρ
(

xi|j

)

∑

i∈It
jt

ρ
(

xi|j

) ,
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ρm
t,j

(

xit|jt

)

=
∑

τ∈T \{t}

∑

i∈Iτ
jτ

ρ
(

xi|j

)

,

where the conditional distribution is defined only when
∑

i∈It
jt

ρ
(

xit|jt

)

6= 0. Given the

marginal distribution given a budget path, we can also define the slicing distribution as

ρs
t

(

xit|jt

)

=
∑

j∈J

ρm
t,j

(

xit|jt

)

F (j|jt),

where F (j|jt) is the conditional probability of observing the budget path j conditional on the

t-th budget being jt in data. The slicing distribution is a mixture of marginal distributions.

It corresponds to the situations when the researcher only focuses on one cross-section.

Proposition 3. If P is rationalized by DRUM, then ρc
t,j, ρm

t,j, and ρs
t are rationalized by RUM

for any t ∈ T and j ∈ J.

Proof. Let, ρ−t((xτ
iτ |jτ

)τ∈T \{t}) =
(

∑

i∈It
j
ρ
(

xi|j

))

. We also define the vector

ρ−τ = (ρ((xt
it|jt

)t∈T \{τ}))j∈J,i∈Ij
.

Note that ρ−1 is of the same length that ρ1
i|j for any patch x1

i|j . We let Rt be the set of linear

orders at time t ∈ T . The scalar at,rt,ik,jk
is the entry of matrix At for column corresponding

to rt and row corresponding to ik, jk.

Lemma 4. If the vector representation of P , ρ, is consistent with DRUM, then for every

finite sequence of patches (including repetitions), k, {(ik, jk)} such that jk ∈ J t and ik ∈ It
jk

∑

k

ρ1
ik |jk

≤ ρ−1 max
rt∈Rt

∑

k

at,rt,ik,jk
.

The condition above implies the fact that marginals, conditionals are consistent with RUM.

Assume that ρ is interior (i.e., rule out zero probabilities on choice paths), then the condition
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above implies that the marginal probability

ρ((xt
it|jt

)t∈T )|(xτ
iτ |jτ

)τ∈T \{1}) =
ρ((xt

it|jt
)t∈T )

ρ((xτ
iτ |jτ

)τ∈T \{1})
,

is consistent with (static) RUM. In that case the condition above is just the ASRP of McFad-

den and Richter (1990). It is easy to see that the same reasoning can be done recursively and

for any permutation of time, so all conditional probabilities of choice, as defined above, are

consistent with (static) RUM if the vector representation ρ is consistent with DRUM. �

Proposition 3 provides a set of necessary conditions that can substantially simplify the testing.

One just need to jointly test all possible marginal and conditional distributions for being

RUM consistent. Moreover, Proposition 3 means that if P is consistent with DRUM then the

data in any given cross-section (slice) is consistent with RUM. In this sense, the empirical

implications of DRUM when an analyst has access only to a slice of choices is the same as the

empirical implications of RUM. However, consistency of the marginal or slicing distributions

does not exhaust the empirical content of DRUM. This is illustrated in Example 5.

Example 5. [Marginals are consistent with WASRP but not rationalized by DRUM] Con-

sider ρ presented in Table 7. This ρ violates stability and D−monotonicity. So DRUM

cannot possibly explain it. At the same time its marginal probabilities at t = 1 are con-

sistent with the WASRP: ρm
1,(2,1)

(

x1
1|2

)

= 1
2
, ρm

1,(1,1)

(

x1
2|1

)

= 1
2
; and ρm

1,(2,2)

(

x1
1|2

)

= 2
3
,

ρm
1,(1,2)

(

x1
2|1

)

= 1
3
. Thus, each of these marginal distributions is consistent with RUM.17

Moreover, the slicing distribution would satisfy ρs
1

(

x1
2|1

)

= F ((1, 1)|1)1
2

+ F ((1, 2)|1)1
3

and

ρs
1

(

x1
1|2

)

= F ((2, 1)|2)1
2

+ F ((2, 2)|2)2
3
. As a result, depending on F ,

ρs
1

(

x1
1|2

)

+ ρs
1

(

x1
2|1

)

∈ [5/6, 7/6]

Thus, if, for example, all budget paths are observed with equal conditional probabilities, then

17Recall that WASRP is the necessary and sufficient condition for marginal probabilities to be rationalized
by RUM in the sense of Proposition 3.
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x2
1|1 x2

2|1 x2
1|2 x2

2|2

x1
1|1 1/6 1/3 2/3 -

x1
2|1 1/3 1/6 1/6 1/6

x1
1|2 1/6 1/3 2/3 -

x1
2|2 1/3 1/6 1/6 1/6

Table 7 – Matrix representation of ρ that is consistent with RUM after slicing, but is not
consistent with DRUM

ρs
1

(

x1
1|2

)

+ ρs
1

(

x1
2|1

)

= 1. Thus, the slicing distribution is also consistent with RUM.

7.3. Pooling

In practice, and in the absence of panel variation, several years or time periods of choices

from budgets are pooled before testing for consistency with RUM (Kitamura and Stoye, 2018,

Deb et al., 2021). Here we explore a potential pitfall of this practice. We show that a panel

dataset that is consistent with DRUM when pooled may not be consistent with RUM. The

spurious rejection of rationality may be driven by the fact that pooling requires us to ignore

time labels and imposes the restriction that the distribution of preferences is independent

across time.

First, we formally define pooling. To simplify the exposition, assume that Bt
j 6= Bt′

j′ for all

t, t′ ∈ T , j ∈ J t, and j′ ∈ J t′
. That is, there are no repeated budgets across time and agents.

Let J = {1, 2, . . . , J}, where J =
∑

t∈T J t is the total number of budgets.

Definition 14 (Pooled Patches). Let

X =
⋃

t∈T

⋃

j∈J t

{ξt
k|j}

be the coarsest partition of
⋃

t∈T

⋃

j∈J t Bt
j such that

ξt
k|j

⋂

Bt
j′ ∈ {ξt

k|j, ∅}
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for any j, j′ and k.

The pooled patches {ξt
k|j} partition every xt

i|j since Bt
j now may intersect with budgets from

different from t time periods (see Figure 3). Given these new patches, we can define the pooled

y1

y2

x1
1|1

B1
1

y1

y2

x2
1|1

B2
1

y1

y2

ξ2
1|1

ξ1
2|1

ξ1
1|1

ξ2
2|1

B1
1

B2
1

Figure 3 – K = 2 goods, T = 2 time periods, one budget per time period. The first and
the second picture depict patches in 2 time periods. The third picture depicts new
patches that arise after pooling the data.

demand ρpool
(

ξt
k|j

)

as the probability of observing someone picking from patch ξt
k|j. Next we

construct a simple example where ρ is rationalizable by DRUM, but the corresponding ρpool

is not consistent with RUM (in the sense of Proposition 3)

Consider the setting with K = 2 goods and T = 2 time periods. In each time period t,

there is only one budget Bt
1. Assume that B1

1 6= B2
1 and B1

1 ∪ B2
1 6= ∅ (see Figure 3). Given

that there is no budget variation for any given time period, there is only one choice path
(

x1
1|1, x2

1|1

)

. So the trivial ρ
((

x1
1|1, x2

1|1

))

= 1 is rationalizable by DRUM. After pooling, since

the budgets overlap, there are 4 patches (we assume that the demand is continuous so there

is no intersection patch). Since there is only one choice path, DRUM does not impose any

restrictions on choice of individuals in these two budgets. As a result, we can take ν1 and

ν2 from the DRUM definition such that ρpool
(

ξ2
1|1

)

+ ρpool
(

ξ1
2|1

)

> 1. As a result, this ρpool

cannot be consistent with RUM.
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8. Counterfactuals

This section shows how one can conduct sharp counterfactual analyses within our frame-

work.18 The sharpness of our results follows from the fact that we have a full characterization

of DRUM.19 To simplify the exposition, we will focus on the simple-setup. That is, we will

consider settings with two intersecting budgets per time period.

Given ρ in the time window T , we want to bound some known function of counterfactual

stochastic demands at the counterfactual time T +1. We assume that at T +1 the consumers

face a pair of prices p1,T +1 and p2,T +1 that are known to the analyst, let the income at both

budgets be 1 (recall that we are working with the simple-setup). We will denote the extended

time window by T c = T ∪ {T + 1}. Similarly, the extended set of budget paths is denoted

by Jc, and the extended vector representation of stochastic demand is denoted by ρc.

Let yc
jT +1

denote the counterfactual random demand of a consumer facing budget jT +1 at

time T + 1. That is,

yc
jT +1

= arg max
y∈BT +1

jT +1

uT +1(y),

where uT +1 is a random utility function at time T + 1.

Definition 15 (Counterfactual marginal and conditional demands). Given ρ, xi|j, and bud-

get jT +1 ∈ J T +1, the counterfactual conditional and marginal demands ρ∗
(

·|jT +1, xi|j

)

and

ρ∗∗ (·|jT +1) are distributions over patches of jT +1 such that

ρ∗
jT +1

(

xT +1
iT +1|jT +1

|xi|j

)

= ρc
(

(

xt
it|jt

)

t∈T c

)/

ρ
(

xi|j

)

,

ρ∗∗
jT +1

(

xT +1
iT +1|jT +1

)

=
∑

xi|j

ρc
(

(

xt
it|jt

)

t∈T c

)

18Sharpness in this setting means that we can compute the shortest possible sets of parameters that are
consistent with the observed data and the model.

19See for early connections between nonparametric counterfactuals and specification testing Varian (1982,
1984), and Blundell, Browning and Crawford (2008), Norets and Tang (2014), Blundell, Kristensen and
Matzkin (2014), Allen and Rehbeck (2019), Aguiar and Kashaev (2021), and Aguiar, Kashaev and Allen
(2022) for recent examples in the analysis of demand, dynamic binary choice, and production.
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for any ρc that satisfies D-monotonicity, stability, and is such that

ρ
(

xi|j

)

=
∑

iT +1∈IT +1

jT +1

ρc
(

(

xt
it|jt

)

t∈T c

)

.

The counterfactual conditional and marginal distributions fully characterize the choices of

consumers in counterfactual situations thus allowing us to compute sharp bounds for the

expectation of any function of yc. For a given measurable function g : X → R, let

g
(

xt
it|jt

)

= inf
y∈xt

it|jt

g(y),

g
(

xt
it|jt

)

= sup
y∈xt

it|jt

g(y).

be the smallest and the largest value g can take over the patch xt
it|jt

.

Proposition 4. Given ρ, xi|j, and budget jT +1 ∈ J T +1,

inf
ρ∗

jT +1

∑

i∈IT +1

jT +1

ρ∗
jT +1

(

xT +1
i|jT +1

|xi|j

)

g
(

xT +1
i|jT +1

)

≤ E

[

g
(

yc
jT +1

)

|xi|j

]

≤ sup
ρ∗

jT +1

∑

i∈IT +1

jT +1

ρ∗
jT +1

(

xT +1
i|jT +1

|xi|j

)

g
(

xT +1
i|jT +1

)

,

inf
ρ∗∗

jT +1

∑

i∈IT +1

jT +1

ρ∗∗
jT +1

(

xT +1
i|jT +1

)

g
(

xT +1
i|jT +1

)

≤ E

[

g
(

yc
jT +1

)]

≤ sup
ρ∗∗

jT +1

∑

i∈IT +1

jT +1

ρ∗∗
jT +1

(

xT +1
i|jT +1

)

g
(

xT +1
i|jT +1

)

,

where infimum and supremum are taken over all possible counterfactual marginal and condi-

tional distributions.

Note that our results are complementary with Kitamura and Stoye (2019) that predicts

counterfactual stochastic demand for a new budget in a given cross-section using static RUM.

We can use their techniques here as well. This section instead focuses on the counterfactual

prediction in the time dimension allowing dynamic preference change.
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9. Monte Carlo Simulations: Statistical Test of DRUM

This section provides a Monte Carlo study to evaluate the performance of the KS’s test

in testing DRUM in finite samples. We refer to KS for a formal definition of the testing

procedure. We consider the simple-setup used throughout the paper with K = T = J t = 2.

We set the number of consumers per choice path to N ∈ {50, 500, 5000} and the number of

simulations for each data generating process (DGP) to R = 1000. The critical values for each

test statistic are computed using B = 999 bootstrap samples. The tuning parameter τ from

KS is set to τ =
√

log(4N)/4N as recommended in KS (given that there are 4 choice paths

in every budget path 4N is the sample size of each budget path).

First, we consider a dynamic random Cobb-Douglas utility model. The utility function is

given by

ut(yt) = yαt

1,ty
1−αt

2,t ,

where αt ∈ (0, 1). Budgets in both time periods are the same and correspond to prices (2, 1)′

and (1, 2)′ and expenditure level 1.

We consider 2 DGPs for random α = (α1, α2)
′.

DGP1: α1 ∼ U [0, 1]; α2 = max{min{0.9α1 + ǫ1, 1}, 0}, ǫ1 ∼ N(0, 25)

DGP2: αt = arctan(εt)/π + 1/2, t = 1, 2; ε = (ε1, ε2)
′ ∼ N(0, V )

where

V =









1 0.5

0.5 1









.

Both DGPs are consistent with DRUM. The rejection rates at 5% significance level for all

3 sample sizes and both DGPs are presented in Table 8 The rejection rates are close to 5%

even for small sample sizes.
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DGP N Rejection rate, %

DGP1
50 3.4
500 4.3
5000 5.1

DGP2
50 3.7
500 4.6
5000 5.4

Table 8 – Every entry represents the rejection rate at 5% significance level and is computed
from 1000 simulations and 999 bootstraps per simulation.

To analyze the finite sample power of the test, we consider the DGP from Table 7. Recall

that this ρ fails both D-monotonicity and stability. The rejection rate is 100 % for all sample

sizes.

It is remarkable that ρ in Table 7 has marginal probabilities consistent with RUM. Yet, even

at small sample sizes such as N = 50 rejection rate is 100%. This simulations show that the

KS test of DRUM has good size and power properties in finite samples.

10. Conclusion

We have introduced and characterized DRUM, a new model of consumer behavior when we

observe a panel of choices from budget paths. In contrast to the static utility maximization

framework, DRUM does not require the assumption that consumers keep their preferences

stable over time. This generality is essential because the static utility maximization frame-

work often fails to explain behavior of individuals.

Our characterization works for any finite collection of choice paths in any finite time window.

The characterization can be applied directly to existing panel consumption datasets using the

statistical tools in KS. Moreover, our simple-setup characterization showcases that DRUM

implies a richer set of behavioral restrictions on the panel of choices than RUM, alleviating
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some concerns about the empirical bite of the latter in a richer domain. These features

position DRUM in-between Afriat’s and McFadden-Richter’s frameworks combining their

strengths and reducing their weaknesses.

We have obtained a generalization of the Weyl-Minkowski theorem for cones. This result

is the basis of a recursive characterization of DRUM in the demand and abstract choice

setups. This new mathematical result will be helpful beyond DRUM to obtain analogous

generalizations of bounded rational models of stochastic choice.
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11. Proofs

11.1. Proof of Theorem 1

((i) ⇐⇒ (ii) ⇐⇒ (iii))

In this proof, we adapt the proof of Theorem 3.1 in KS for RUM for the dynamic case. Our

proof uses profiles of nonstochastic demand profiles. For each time period t ∈ T we define

the nonstochastic demand types as in KS: (θt
1, · · · , θt

Jt) ∈ Bt
1 × · · · × Bt

Jt . This system of

types is rationalizable if θt
j ∈ arg maxy∈Bt

j
ut(y) for j = 1, · · · , J t for some utility function ut.

Then we form any given nonstochastic demand profile by stacking up the demand types in a

budget path j as θj = (θt
jt

)jt∈j.

Fix ρ. For fixed t ∈ T , let the set Y∗∗
t collect the geometric center point of each patch.

Let ρ∗∗ be the unique dynamic stochastic demand system concentrated on Y∗∗
t for all t ∈

T . KS established that demand systems can be arbitrarily perturbed within patches in a

given time period t such that ρ is rationalizable by DRUM if and only if ρ∗∗ is. It follows
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that the rationalizability of ρ can be decided by checking whether there exists a mixture of

nonstochastic demand profiles supported on Y∗∗
t for all t ∈ T .

Since we have assumed a finite number of budgets and time periods, there will be a finite

number of budget paths. That is, using our notation, we have |J| budget paths. Also, because

Y∗∗
t is finite for all t ∈ T , there are finitely many nonstochastic demand profiles. Noting that

these demand profiles are characterized by binary vector representation corresponding to

columns of AT , the statement of the theorem follows immediately.

The proof of (i) =⇒ (iv) follows from Border (2007). The proof (iv) =⇒ (i) is completely

analogous to the proof for the case of RUM in Border (2007). We just need to replace the

system of equations in that proof with the one we describe in Theorem 1.(ii). The rest of the

proof follows from Farkas’ lemma.

11.2. Proof of Theorem 2

Necessity. Suppose that ρ is rationalized by DRUM.

Necessity of stability. By the definition of DRUM, there exists a distribution over U , µ,

such that

ρ
(

(

xit|jt

)

t∈T

)

=
∫

∏

t∈T

1



 arg max
y∈Bt

jt

ut(y) ∈ xt
it|jt



 dµ(u)

for all i, j. Fix some t′ ∈ T , xi|j, and jt′ ∈ J t′
. Note that

∑

i∈It′
j
t′

ρ
(

xi|j

)

=

∑

i∈It′
j
t′

∫

1





 arg max
y∈Bt′

j
t′

ut′

(y) ∈ xt′

i|jt′







∏

t∈T \{t′}

1



 arg max
y∈Bt

jt

ut(y) ∈ xt
it|jt



 dµ(u) =

∫

∑

i∈It′
j
t′

1





 arg max
y∈Bt′

j
t′

ut′

(y) ∈ xt′

i|jt′







∏

t∈T \{t′}

1



 arg max
y∈Bt

jt

ut(y) ∈ xt
it|jt



 dµ(u) =
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∫

∏

t∈T \{t′}

1



 arg max
y∈Bt

jt

ut(y) ∈ xt
it|jt



 dµ(u),

where the last equality follows from arg max
y∈Bt′

j
t′

ut′
(y) being a singleton (ut′

is continuous

and strictly monotone) and {xt′

i′|jt′
}

i∈It′
j
t′

being a partition. The right-hand side of the last

expression does not depend on the choice of jt′ . Stability follows from t′ and xi|j being

arbitrary. Note that stability is necessary for DRUM to hold not just in simple-setup but in

settings with many budgets.

Necessity of D-monotonicity. Note that AT = A1 ⊗ AT −1, where

A1 =

























1 1 0

0 0 1

1 0 0

0 1 1

























.

Note that, since in every time period there are only 2 budgets, if ρ is rationalized by DRUM,

then by Theorem 1, there exists component-wise nonnegative ν (i.e. ν ≥ 0) such that

AT ν = ρ. We next show that this ν ≥ 0 together with the stability, which we already showed

to be satisfied, implies D-monotonicity.

First, note that we can partition ν into 3 vectors (ν1
1 , ν1

2 , and ν1
3) and ρ into 4 vectors (ρ1

1|1,

ρ1
2|1, ρ1

1|2, and ρ1
2|2) such that

























ρ1
1|1

ρ1
2|1

ρ1
1|2

ρ1
2|2

























= ρ = AT ν = A1⊗AT −1ν =

























AT −1 AT −1 0

0 0 AT −1

AT −1 0 0

0 AT −1 AT −1









































ν1
1

ν1
2

ν1
3

















=

























AT −1(ν
1
1 + ν1

2)

AT −1ν
1
3

AT −1ν
1
1

AT −1(ν
1
2 + ν1

3)

























.

In this representation, ρ1
i|j correspond to all choice paths that contain patch x1

i|j . Subtracting

the third line from the first one, and the second line from the forth one in the last system of
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equations, we obtain that

ρ1
1|1 − ρ1

1|2 = ρ1
2|2 − ρ1

2|1 = AT −1ν
1
2 ≥ 0,

where the last inequality follows from ν ≥ 0 and AT −1 consisting of zeros and ones. Thus,

D
(

x1
i′
1
|j′

1

) [

ρ(xi|j)
]

≥ 0 if x1
i′
1
|j′

1
≻D x1

i1|j1
.

Applying the above arguments to ρ1
1|1 − ρ1

1|2 = AT −1ν1
2 , we obtain that

(ρ1
1|1,1|1 − ρ1

1|2,1|1) − (ρ1
1|1,1|2 − ρ1

1|2,1|2) = (ρ1
2|2,2|2 − ρ1

2|1,2|2) − (ρ1
2|2,2|1 − ρ1

2|1,2|1) = AT −2ν2
2 ≥ 0,

where ρ1
i|j,i′|j′ correspond to all choice paths that contain patches x1

i|j and x2
i′|j′. Thus,

D
(

x2
i′
2
|j′

2

)

D
(

x1
i′
1
|j′

1

) [

ρ(xi|j)
]

≥ 0 if x1
i′
1
|j′

1
≻D x1

i1|j1
and x2

i′
2
|j′

2
≻D x2

i2|j2
. Repeating these steps

we can get that for all K ≤ T

D
(

xK
i′
K

|j′
K

)

. . . D
(

x2
i′
2
|j′

2

)

D
(

x1
i′
1
|j′

1

) [

ρ(xi|j)
]

≥ 0

if xt
i′
t|j′

t
≻D xt

it|jt
for all t = 1, . . . , K. Note that for any permutation of time periods the

matrix AT does not change. Hence, the above steps can be performed for any permutation

of xi|j and D-monotonicity is satisfied.

Sufficiency. Assume that ρ is stable and D-monotone. Define BL = B1 ⊗ BL−1 and

PAT
= PA1

⊗ PAT −1
, where

B1 = (A′
1A1)

−1A′
1 =

















0.25 0.25 0.75 −0.25

0.5 −0.5 −0.5 0.5

−0.25 0.75 0.25 0.25
















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and

PA1
= A1(A

′
1A1)

−1A′
1 =

























0.75 −0.25 0.25 0.25

−0.25 0.75 0.25 0.25

0.25 0.25 0.75 −0.25

0.25 0.25 −0.25 0.75

























.

If we show that ν = BT ρ satisfies (i) ν ≥ 0 and (ii) AT ν = ρ, then by Theorem 1 ρ is

rationalized by DRUM.

Step 1: ν ≥ 0. Note that

















ν1
1

ν1
2

ν1
3

















= ν = BT ρ = B1⊗BT −1ρ =

















0.25BT −1 0.25BT −1 0.75BT −1 −0.25BT −1

0.5BT −1 −0.5BT −1 −0.5BT −1 0.5BT −1

−0.25BT −1 0.75BT −1 0.25BT −1 0.25BT −1









































ρ1
1|1

ρ1
2|1

ρ1
1|2

ρ1
2|2

























.

Applying stability (i.e., ρ1
1|2 + ρ1

2|2 = ρ1
1|1 + ρ1

2|1), we can conclude that

















ν1
1

ν1
2

ν1
3

















=

















BT −1ρ
1
1|2

BT −1(ρ
1
1|1 − ρ1

1|2)

BT −1ρ
1
2|1

















.

If we next apply the above steps to ν1
1 = BT −1ρ

1
1|2, then we can obtain that

















ν1
11

ν1
12

ν1
13

















=

















BT −2ρ
1
1|2,1|2

BT −2(ρ1
1|1,1|2 − ρ1

1|2,1|2)

BT −2ρ
1
1|2,2|1

















,

where ρ1
i|j,i′|j′ correspond to all choice paths that contain patches x1

i|j and x2
i′|j′. If, instead,
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we apply it to ν1
2 = BT −1(ρ

1
1|1 − ρ1

1|2), then we obtain

















ν1
21

ν1
22

ν1
23

















=

















BT −2(ρ1
1|1,1|2 − ρ1

1|2,1|2)

BT −2((ρ1
1|1,1|1 − ρ1

1|2,1|1) − (ρ1
1|1,1|2 − ρ1

1|2,1|2))

BT −2(ρ1
1|1,2|1 − ρ1

1|2,2|1)

















.

Repeating the above steps T times, we obtain that every component of ν is either equal to

ρ
(

(

xt
1|2

)

t∈T

)

≥ 0, or ρ
(

(

xt
2|1

)

t∈T

)

≥ 0, or

D
(

xt
i′|j′

) [

ρ
(

xi|j

)]

≥ 0,

for some t ∈ T and some xi|j. The last inequality follows from xt
i′
t|j′

t
≻D xt

it|jt
for all t ∈ t

and D-monotonicity. Hence, the proposed ν is nonnegative.

Step 2: AT ν = ρ. Note that

AT ν = PAT
ρ =

























0.75PAT −1
−0.25PAT −1

0.25PAT −1
0.25PAT −1

−0.25PAT −1
0.75PAT −1

0.25PAT −1
0.25PAT −1

0.25PAT −1
0.25PAT −1

0.75PAT −1
−0.25PAT −1

0.25PAT −1
0.25PAT −1

−0.25PAT −1
0.75PAT −1

















































ρ1
1|1

ρ1
2|1

ρ1
1|2

ρ1
2|2

























.

Since, stability implies that ρ1
1|1 + ρ1

2|1 = ρ1
1|2 + ρ1

2|2, we obtain

AT ν = PAT
ρ =

























PAT −1
ρ1

1|1

PAT −1
ρ1

2|1

PAT −1
ρ1

1|2

PAT −1
ρ1

2|2

























.

59



Repeating the above step one more time we obtain that

PAT −1
ρ1

i|j =

























PAT −2
ρ1

i|j,1|1

PAT −2
ρ1

i|j,2|1

PAT −2
ρ1

i|j,1|2

PAT −2
ρ1

i|j,2|2

























,

where i, j ∈ {1, 2}. Repeating the above steps T times for each subvector, we obtain

PAT
ρ = ρ.

Hence, Aν = ρ.

11.3. Proof of Theorem 3

Let LT = ⊗t∈T Lt and KT = ⊗t∈T Kt.

Step 1. Take any v ≥ 0. We want to show that LT KT v ≥ 0. Note that by the properties of

the Kronecker product

LT KT v = ⊗T
t=1(LtKt)v.

Define DT −1 = ⊗T −1
t=1 (LtKt). We can rewrite LT KT v as

LT KT v =

















DT −1
11 LT KT DT −1

12 LT KT . . .

DT −1
21 LT KT DT −1

22 LT KT . . .

. . . . . . . . .

















v =

















∑

k DT −1
1k LT KT vk

T

∑

k DT −1
2k LT KT vk

T

. . .

















,

where DT −1
ij is the (i, j)-element of DT −1 and vk

T are subvectors of v of the length equal to

the number of columns of LT KT . By assumptions of the theorem, LtKtṽ ≥ 0 for any ṽ ≥ 0

60



and any t, hence,

v ≥ 0 =⇒ vk
T ≥ 0 =⇒ LT KT vk

T ≥ 0.

Moreover, the rows of LT KT v are weighted sums of the elements of the rows of matrix DT −1

weighted with some non-negative weights LT KT vk
T . Hence, if DT −1y ≥ 0 for any conformable

vector y ≥ 0, then LT KT v ≥ 0. Repeating the above step one more time, we can conclude

that DT −1y ≥ 0 for any y ≥ 0, if DT −2x ≥ 0 for any conformable x ≥ 0. Repeating the step

finitely many times we obtain that if D1 = L1K1z ≥ 0 for any z ≥ 0, then LT KT v ≥ 0 for

any v ≥ 0. The latter is satisfied by the definition of L1 and K1. Hence,

{KT v : v ≥ 0} ⊆ {z : LT z ≥ 0}.

Step 2. KT has a full row rank if and only if Kt is of full row rank for all t. Thus, if KT has

full row rank then we can represent any z as a weighted sum of columns of KT (some weights

may be negative). Thus, we want to show that if {v : KT v = z} does not contain nonnegative

vectors, then LT z should have a negative component. We will prove the result by induction.

For T = 2, towards a contradiction, assume that LT z ≥ 0 and every v ∈ {v : KT v = z} has

at least one negative component. Take any v ∈ {v : KT v = z}. Since LT z = LT KT v ≥ 0,

we can conclude that

LT KT
∑

k

DT −1
mk vk

T ≥ 0

for all m. Hence, by the definition of LT ,
∑

k DT −1
mk vk

T ≥ 0 for all m. Let VT be the matrix

which k-th column is vk
T . Hence,

DT −1V ′
T ≥ 0

For T = 2, DT −1 = L1K1. Thus, DT −1V ′
T ≥ 0 implies that every element of VT must be

nonnegative. The later is not possible since {v : KT v = z} does not contain nonnegative
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vectors. Now assume that for K − 1, the statement is correct. That is,

DK−1v ≥ 0 ⇐⇒ v ≥ 0.

Towards a contradiction assume that the statement is incorrect for T = K. Repeating the

above argument, we will obtain that

DK−1V ′
K ≥ 0.

Thus, v ≥ 0. The contradiction completes the proof.

11.4. Proof of Theorem 4

Step 1. If ρ is consistent with DRUM, then stability is implied by the proof of Theorem 2.

Moreover, ⊗t∈T Btρ ≥ 0 follows from applying Theorem 3 to Kt = At and Lt = Bt.

Step 2. Assume that ρ is stable and ⊗t∈T Btρ ≥ 0. If we show that the system of equations

AT v = ρ has a solution, then Step 2 of the proof of Theorem 3 would imply that the system

of equations AT v = ρ has a nonnegative solution. Hence, ρ is consistent with DRUM.

Before we formally show the existence of the solution, let us first replicate the proof in the

simple-setup with 2 time periods. Note that

At =

























1 1 0

0 0 1

1 0 0

0 1 1

























.

First, construct matrix At∗ by removing the last row from At. That is, from every budget

except the first one (the first two rows), we removed the rows that correspond to the last
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patch of that budget (rows 3 and 4 correspond to the second budget). As a result,

At∗ =

















1 1 0

0 0 1

1 0 0

















.

Put the removed rows to matrix At−. That is, At− = (0 1 1). Note that At− = GtAt∗
, where

Gt = (1 1 − 1). Moreover, AT = A1 ⊗ A2 (see Table 3) can be partitioned into the matrix A∗
T

that contains the rows generated by rows of A1∗ and A2∗ (A∗
T = A1∗ ⊗ A2∗), and the matrix

A−
T that contains the rest of the rows. That is,

AT =









A1∗

A1−









⊗









A2∗

A2−









⊗ =

























A1∗ ⊗ A2∗

A1∗ ⊗ A2−

A1− ⊗ A2∗

A1− ⊗ A2−

























=









A∗
T

A−
T









.

Let ρ∗ and ρ− be the parts of ρ that correspond to rows of A∗
T and A−

T . Since every element

of ρ corresponds to some choice path, ρ∗ does not contain choice paths that contain either

x1
2|2 or x2

2|2 (we removed one row from A1 and one row from A2). Similarly, ρ− contains all

choice paths where at least in one time period t a patch was removed from At.

Note that At∗, t ∈ T , has full row rank. Hence, A∗
T , as a Kronecker product of full row rank

matrices, is of full row rank as well. Thus, v∗ = A∗′
T (A∗

T A∗′
T )−1ρ∗ exists and solves A∗

T v = ρ∗.

If we show that A−
T v∗ = ρ−, then v∗ solves AT v = ρ as well. Note that,

A1∗ ⊗ A2−v∗ =
(

A1∗ ⊗ G2A2∗
)

v∗ =

























G2 0 . . .

0 G2 . . .

. . . . . . . . .

. . . 0 G2

























(

A1∗ ⊗ A2∗
)

v∗ = diag(G2)ρ∗,
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where diag(L) is a block-diagonal matrix with matrix L being on the main diagonal. The

vector ρ∗ has 9 elements with the first 3 elements corresponding to choice paths that have

x1
1|1 and all possible patches that were not removed from t = 2. That is, the first 3 elements

of ρ∗ are ρ
((

x1
1|1, x2

1|1

))

, ρ
((

x1
1|1, x2

2|1

))

, and ρ
((

x1
1|1, x2

1|2

))

(the patch x2
2|2 was removed).

Thus, the first element of diag(G2)ρ∗ is

ρ
((

x1
1|1, x2

1|1

))

+ ρ
((

x1
1|1, x2

2|1

))

− ρ
((

x1
1|1, x2

1|2

))

= ρ
((

x1
1|1, x2

2|2

))

,

where the equality follows from stability of ρ. Similarly, the second element of diag(G2)ρ∗ is

ρ
((

x1
2|1, x2

1|1

))

+ ρ
((

x1
2|1, x2

2|1

))

− ρ
((

x1
2|1, x2

1|2

))

= ρ
((

x1
2|1, x2

2|2

))

,

and the third element is ρ
((

x1
1|2, x2

2|2

))

. So v∗ solves the equations with only x2
2|2 dropped.

Next, consider A1− ⊗A2∗v∗. Note that all objects we work with (e.g., AT and A∗
T ) are defined

as a function of T . Hence, if we push the time period t to the very end (i.e., 1, . . . , t − 1, t +

1, . . . , T, t), we still can define all objects for the new order of time labels. Let W t (with

inverse W t,−1, which pushes the last element of T to t-th position) be a transformation that

recomputes all objects for the time span where t is pushed to the end. For example, W 1 pushes

the label t = 1 to the end of T (i.e., T becomes {2, 1}). Transformation W t satisfies the

following three properties: W t[C] = C if C does not depend on T ; W t[CD] = W t[C]W t[D]

for any matrices C and D; and W t[⊗t′∈T At′∗] = ⊗t′∈T \{t}At′∗ ⊗ At∗. Hence,

A1− ⊗ A2∗v∗ = W 1,−1
[

W 1
[(

A1− ⊗ A2∗
)

v∗
]]

= W 1,−1
[(

A2∗ ⊗ A1−
)

W 1 [v∗]
]

=

W 1,−1
[

diag(G1)
(

A2∗ ⊗ A1∗
)

W 1 [v∗]
]

= W 1,−1
[

diag(G1)W 1
[

W 1,−1
[(

A2∗ ⊗ A1∗
)

W 1 [v∗]
]]]

=

W 1,−1
[

diag(G1)W 1
[(

A1∗ ⊗ A2∗
)

v∗
]]

= W 1,−1
[

diag(G1)W 1 [ρ∗]
]

.

In words, W 1 [ρ∗] changes labels so that t = 1 is the last one and reshuffles elements of ρ∗,

then diag(G1)W 1 [ρ∗] computes probabilities of choice paths where x2
2|2 were dropped. Finally,
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W 1,−1 returns the original labeling. So the result is the subvector of ρ− where x1
2,2 is dropped

(relabelling changes x2
2|2 to x1

2|2). So v∗ solves the equations where only x1
2|2 dropped.

Let Y t be an operator such that Y t[·] = W t,−1 [diag(Gt)W t[·]]. That is, Y t pushes t to the

end, multiplies the resulting object by diag(Gt) and then pushes label t back to its spot.

Using operator Y t we can deduce that

A1− ⊗ A2−v∗ = Y 1
[

Y 2 [ρ∗]
]

=

ρ
((

x1
2|2, x2

1|1

))

+ ρ
((

x1
2|2, x2

2|1

))

− ρ
((

x1
2|2, x2

1|2

))

= ρ
((

x1
2|2, x2

2|2

))

,

where the last equality follows from stability of ρ. Hence, the equation where both x1
2|2 and

x2
2|2 were dropped is also solved by v∗.

Next we generalize the above arguments for arbitrary T and At. Consider the following

modification of At, t ∈ T . From every budget, except the first one, we pick the last patch

and remove the corresponding row from At. Let At∗ denote the resulting matrix. Thus,

matrix At can be partitioned into At∗ and At−, where rows of At− correspond to patches

removed from At. Consider the first row of At−. It corresponds to a last patch from the

second budget at time t. Note that since sum of all rows that correspond to the same budget

is equal to the row of ones. Hence, the first row of At− is equal to sum of the rows that

correspond to budget 1 minus sum of the remaining rows in budget 2. That is, the first row

of At− can be written as

(1, . . . , 1, −1, . . . , −1, 0, . . . , 0)At∗.

Similarly, the second row of At− can be written as

(1, . . . , 1, 0, . . . , 0, −1, . . . , −1, 0, . . . , 0)At∗.

In matrix notation, we can rewrite At− as At− = GtAt∗, where Gt is the matrix with the k-th

row having the elements that correspond to the patches from the first budget at time t equal
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to 1, the elements that correspond to the patches from the k-th budget equal to −1, and the

rest of elements equal to 0.

Next note that, up to permutation of rows, AT can be partitioned into A∗
T = ⊗t∈T At∗ and

matrices of the form ⊗t∈T Ct, where Ct ∈ {At∗, At−}, with Ct = At− for at least one t. We

will stack all these matrices into A−
T . Next, let ρ∗ denote the subvector of ρ that corresponds

to choice paths that do not contain the patches removed from At, t ∈ T . Thus, ρ = (ρ∗′, ρ−′)′,

where ρ− corresponds to all elements of ρ that contain at least one of the removed patches.

As a result, we can split the original system into two: A∗
T v = ρ∗ and A−

T v = ρ−.

Consider the system A∗
T v = ρ∗. We formally prove later that At∗ has full row rank for all t.

Then A∗
T is also of full row rank and, hence, A∗

T A∗′ is invertible and v∗ = A∗′ (A∗
T A∗′)−1 ρ∗

solves the system. If we show that

A−
T v∗ = ρ−,

then we prove that AT v = ρ always has a solution, which will complete the proof.

Note that A−
T consists of the blocks of the form ⊗t∈T Ct, where Ct ∈ {At∗, At−} and Ct = At−

for at least one t. Next note that for any A, B, and C

A ⊗ (BC) = diag(B)(A ⊗ C),

where diag(B) is the block-diagonal matrix constructed from B. Indeed,

A ⊗ (BC) =

















A11BC A12BC . . .

A21BC A22BC . . .

. . . . . . . . .

















=

















B 0 . . .

0 B . . .

. . . . . . B

































A11C A12C . . .

A21C A22C . . .

. . . . . . . . .

















= diag(B)(A ⊗ C)
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First, consider ⊗t∈T Ct, where Ct ∈ {At∗, At−} and Ct = At− for only one t. Hence,

⊗t′∈T Ct′

v∗ = W t,−1
[

diag(Gt)W t [ρ∗]
]

= Y t[ρ∗].

Note that because ρ is stable, diag(GT )ρ∗ is the subvector of ρ− that correspond to choice

paths that contain one of the removed patches from the last period only. So, W t [ρ∗] first

pushes the period t to the very end, then diag(Gt)W t [ρ∗] computes the elements of ρ−, and

finally W t,−1 [diag(Gt)W t [ρ∗]] moves the time period t back to its place.

Next, consider ⊗t∈T Ct, where Ct ∈ {At∗, At−} and Ct = At− and Ct′
= At′− for two distinct

t, t′. Similarly to the previous case,

⊗t′∈T Ct′

v∗ = W t,−1
[

diag(Gt)W t
[

W t′,−1
[

diag(Gt′

)W t′

[ρ∗]
]]]

= Y t[Y t′

[ρ∗]] = Y t ◦ Y t′

[ρ∗],

where Y t ◦ Y t′
denotes the composite operator. Again, W t′,−1

[

diag(Gt′
)W t′

[ρ∗]
]

computes

the subvector of ρ− that correspond to choice path where patch from only one time t′ was

missing. Applying to the resulting vector W t,−1 [diag(Gt)W t [·]] computes the subvector of

ρ− with patches missing from t and t′ only. Repeating the arguments for all possible rows of

A−
T , we obtain that

⊗t′∈T Ct′

v∗ = ◦t′:Ct′=At′−Y t′

[ρ∗]

and, thus, A−
T v∗ = ρ−. Hence, v∗ is a solution to AT v = ρ.

It is left to show that A∗
t is full row rank matrix for all t. To do so we first prove the

same result for a more general version of static RUM with “virtual” budgets introduced in

Section 5.4.

Let R̄t be the set of all linear orders on Xt. For any jt ∈ J̄ t, it ∈ IT
jt

, and ≻∈ R̄t let

āt
≻ =

(

1

(

xt
it|jt

≻ x, ∀x ∈ C(jt)
))

jt∈J̄ t,it∈It
jt
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be the vector of 0s and 1s that the best patch in every virtual budget. Analogously to At, let

Āt denote the matrix which columns are {at
≻}≻∈R̄t , and Āt∗ be the matrix constructed from

Āt by removing the rows that correspond to the last patch in every budget but the first one.

Lemma 5. Āt∗ has full row rank.

Proof. Take T = {t}. By Corollary 2 in Saito (2017) or Theorem 2 in Dogan and Yildiz

(2022), for any ρ̄ ≥ 0 such that the sum over patches in any budget is equal to 1, there exists

ν such that

Ātν = ρ̄.

Since Ātαν = αĀtν = αρ̄ for any α ∈ R, Ātν can be any positive and any negative vector such

that the sum over all patches in each budget does not depend on a budget. Moreover, since

any vector can be written as a sum of a positive and a negative vectors, Ātν can represent

any ρ̄ such that sums over budgets are budget independent. Hence, if we remove the last

row from every budget except the first one, we obtain Āt∗ν = ρ̄∗, where ρ̄∗ is any vector.

Hence, Āt∗ is of full row rank. Indeed, if it was not, then there would exists ξ 6= 0 such that

ξ′Āt∗ν = 0 · ν = 0 for all ν. Hence, ξ′Āt∗ν = ξ′ρ̄∗ = 0 for all ρ̄∗. The latter contradicts to

ξ 6= 0. �

Lemma 5 implies that At∗ is of full row rank since by assumption it has at least the same

number of columns as rows (
∑

jt∈J t(I t
jt

− 1) ≤ |Rt| − 1) and can be constructed from Ātν by

removing some rows and some columns.

We conclude this section by by the following proposition that can be used to simplify the

computational complexity of the H-representation.

Proposition 5. Assume that
∑

jt∈J t(I t
jt

− 1) ≤ |Rt| − 1. Then ρ is consistent with DRUM

if and only if (i) ρ is stable and ⊗t∈T Bt∗ρ∗ ≥ 0, where Bt∗ is the H-representation of At∗.

Proof. Step 1. Note that since A∗
T is a submatrix of AT , AT v = ρ implies A∗

T v = ρ∗. The

latter implies that ⊗t∈T Bt∗ρ∗ ≥ 0. Stability of ρ follows from Theorem 4.
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Step 2. Assume that ρ is stable and that ⊗t∈T Bt∗ρ∗ ≥ 0. By Theorem 3, since A∗
T has full

row rank, there is v̄ ≥ 0 such that A∗
T v̄ = ρ∗. It is left to show that A−

T v̄ = ρ−. Note that

v̄ = v∗ + z, where v∗ = A∗′
T (A∗

T A∗′
T )−1 and z = v̄ − v∗. Since v∗ is also a solution of A∗

T v = ρ∗,

A∗
T z = 0. Since stability implies that A−

T v∗ = ρ− (see the proof of Theorem 4), it suffices to

show that A−
T z = 0. The latter follows from

⊗t∈T Ctz = ◦t′:Ct′=At′−Y t′

[A∗
T z] = ◦t′:Ct′=At′−Y t′

[0] = 0.

�
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