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Abstract

This paper provides a new identification result for a large class of models

in which consumers participate in production. I show that consumer

preferences are necessary and sufficient to identify production functions

through cross-equation restrictions implied by first-order conditions. In

addition, I derive a nonparametric revealed preference characterization

of the class of models that exhausts its empirical implications. Finally,

I use a novel and easy-to-apply inference method that is valid under

partial identification. This method can be used to statistically test the

model, can deal with any type of latent variables (e.g., measurement

error), and can be combined with standard exclusion restrictions. Using
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data on shopping expenditures and shopping intensity from the NielsenIQ

Homescan Dataset, I show that a doubling of shopping intensity decreases

prices paid by about 15%. At the same time, I find that search costs are

significant, hence largely diminishing benefits of price search.

Keywords : Production function, price search, demand analysis

1 Introduction

This paper is concerned with what can be learned about production functions

that arise in consumer problems. These functions are ubiquitous in economic

analyses such as in models of price search, household production, human capital,

and general equilibrium. This paper provides a new identification result that uses

the structure of the consumer problem to show that preferences are necessary and

sufficient to identify production functions. The key insight of my identification

strategy is to note that the consumer problem provides a link between preferences

and production via the first-order conditions. If preferences are identified, cross-

equation restrictions from the first-order conditions nonparametrically identify the

part of the production functions that relates to consumer preferences. Likewise,

if production functions are identified, the cross-equation restrictions can be used

to identify preferences.

The careful reader will note that the identification strategy shares similari-

ties with Gandhi, Navarro and Rivers (2020) in that I exploit restrictions implied

by optimizing behavior to identify production functions.1 My approach other-

wise differs due to specific challenges arising in consumer problems. First, mono-

1Gandhi, Navarro and Rivers (2020) show that using the structure of the firm problem resolves
the lack of identification of gross production functions in the proxy variable approach developed
by Olley and Pakes (1996).
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tone transformations of the utility function may impact production functions even

though preferences remain unchanged. Second, the consumer preferences are un-

known such that first-order conditions are not immediately useful to identify the

production functions. My main innovation is to derive a new identification result

that exploits the structure of the consumer problem to show that one can learn

about production functions from preferences, and learn about preferences from

production functions.

The second contribution of this paper is to provide a nonparametric char-

acterization of a large class of models via shape restrictions. These restrictions

can be shown to imply the well-known Generalized Axiom of Revealed Preference

(GARP). Although GARP captures the full empirical content of the model, it does

not guarantee the utility function to be concave when budget sets are nonlinear.

Hence, shape restrictions provide a preferable alternative to use the identification

power that stems from the consumer model. Importantly, they can be used as the

basis for the estimation strategy.

The previous characterization is rooted in the revealed preference tradition

(Afriat, 1967; Diewert, 1973; Varian, 1982; Browning, 1989). As such, it gives

minimal testable conditions for the data to be rationalized by the model. Due to

the nonlinearity of the production functions, the treatment of nonlinear budget

sets builds on Matzkin (1991) and, more specifically, Forges and Minelli (2009).2

A difference is that I allow for the utility function to be decreasing in some of its

arguments to cover additional models of interest such as those of price search.

The methodology I employ for the estimation of the production functions is

that of Schennach (2014). This is motivated by a result due to Aguiar and Kashaev

2In a different direction, Nishimura, Ok and Quah (2017) extend the revealed preference
analysis to a diverse set of choice environments.
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(2021) that shows how to impose shape constraints without increasing the dimen-

sionality of the problem. I propose a different implementation than Aguiar and

Kashaev (2021) due to the wide variety of models encompassed by my results.3

The method of Schennach (2014) also allows me to statistically test the model and

thus check the plausibility of modelling assumptions. Finally, it can be applied in

partially identified models without additional complications via a chi-square ap-

proximation.4 This feature is useful as identification may not always be achieved

such as in the presence of measurement error.

My approach combines revealed preference and econometrics to make inference

on objects of interest.5 In a similar fashion, Blundell, Browning and Crawford

(2008) use the Strong Axiom of Revealed Preference (SARP) to improve predic-

tions on demand responses to price changes, Blundell et al. (2015) use SARP to

obtain nonparametric bounds on welfare measures, Cherchye et al. (2015a) use a

weaker version of SARP to bound the sharing rule in a collective model, and Deb

et al. (2023) bound the welfare implications of a price change via analogous re-

vealed preference restrictions.6 The estimation strategy put forward in this paper

may also be useful for such endeavors.

The third contribution of this paper is to apply the estimation strategy to

a model of price search that allows for unrestricted heterogeneity in preferences.

Price search describes the process whereby buyers actively seek to gauge the most

favorable prices. Its importance has been recognized at least since the seminal

3Specifically, I use a rejection sampling algorithm for the integration of the latent variables
that can be applied in models defined by linear or nonlinear constraints indiscriminately, includ-
ing combinations thereof.

4Other methods in the literature include Chernozhukov, Hong and Tamer (2007) and Andrews
and Soares (2010).

5The shape restrictions imply GARP but further ensure that the consumer problem is well-
behaved.

6Other work include Blundell, Browning and Crawford (2003, 2007), Blundell, Horowitz and
Parey (2012) and Blundell, Kristensen and Matzkin (2014), among others.
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paper of Stigler (1961) and has gained strong empirical support over the years.7

In an influential paper, Aguiar and Hurst (2007) show that price search partially

explains the retirement-consumption puzzle.8 My application provides new in-

sights regarding the validity of price search, the robust impacts of search on prices

paid, and the size of search costs.

My empirical analysis uses the NielsenIQ Homescan Dataset which is a data

set that tracks U.S. households’ food purchases on each of their trips to a wide

variety of retail outlets. I measure shopping intensity by the number of shopping

trips as it captures price variations across stores and price discounts found by

frequently visiting stores. The panel structure of the data enables me to set

identify the elasticity of price with respect to shopping intensity from individual

time-variation in shopping intensity. Furthermore, the link between the utility

function and the price function given by the first-order conditions allows me to

recover search costs.

In a validation study of the NielsenIQ Homescan Dataset, Einav, Leibtag and

Nevo (2010) report severe measurement error in prices and provide information

about its structure. The presence of measurement error requires special attention

for two reasons. First, the model could be compatible with the true data but

incompatible with the observed data, hence leading to the erroneous rejection

of the model.9 Second, measurement error can complicate empirical analyses by

obscuring the true behavior of variables such as expenditure. In turn, this can

bias estimators in unpredictable ways. For example, measurement error may be

nonclassical such that bias could arise even if it appears on the dependent variable

7For a general survey, see Baye et al. (2006).
8The retirement-consumption puzzle was dubbed due to the observed drop in expenditures

occurring around retirement that contradicts the life-cycle hypothesis.
9Measurement error has been shown to reverse conclusions about the validity of exponential

discounting in single-individual households (Aguiar and Kashaev, 2021).
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in a standard regression setting.

My application formalizes the empirical evidence documenting (i) the effects

of price search on prices paid (Aguiar and Hurst, 2007), (ii) the use of price search

as a mechanism to mitigate adverse income shocks (McKenzie, Schargrodsky and

Cruces, 2011; Nevo and Wong, 2019), and (iii) the wide heterogeneity in prices

paid (Kaplan and Menzio, 2015; Kaplan et al., 2019; Hitsch, Hortacsu and Lin,

2019). Additionally, by testing the main assumptions on which the price search

literature relies, I provide a foundation for existing models of price search (Aguiar

and Hurst, 2007; Pytka, 2017; Arslan, Guler and Taskin, 2021).

Using my methodology in the NielsenIQ Homescan Dataset, I find support for

price search behavior in single households. However, the model is rejected in multi-

person households.10 This outcome can be rationalized by the implicit assumption

that multi-person households behave as a single decision maker and the solid evi-

dence against it in the literature (see e.g., Thomas, 1990, Fortin and Lacroix, 1997,

Browning and Chiappori, 1998, and Cherchye and Vermeulen, 2008). As such, this

negative finding provides evidence that the current methodology is successful at

detecting erroneous assumptions. Furthermore, it reiterates the importance of rec-

ognizing the collective nature of households, including in models of price search.

Restricting the empirical analysis to single households, the conservative 95%

confidence set on the expected elasticity of price with respect to shopping intensity

is [−0.2,−0.1]. In other words, a doubling of shopping intensity decreases the

price paid by about 15%. My confidence set is consistent with the estimates of

Aguiar and Hurst (2007) obtained using an instrumental variable approach.11 This

finding suggests that the exogeneity requirement of their instruments are fulfilled,

10The term single household refers to households with a single individual in them.
11It also rationalizes the calibration of Arslan, Guler and Taskin (2021) used in a different

model of price search.
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and that measurement error does not significantly bias their estimates.

Since shopping intensity enters preferences, the structure of the model fur-

ther allows me to assess the utility cost associated with price search. Once again

restricting the analysis to single consumers, I get that the conservative 95% con-

fidence set on a lower bound of the expected search cost is [10, 50]. That is, the

expected search cost is about 10 to 50 dollars, representing at least 20 to 116

percent of consumers observed expenditures. This finding shows that search costs

are significant and should be accounted for when measuring the consumer welfare.

The rest of the paper is organized as follows. Section 2 defines the class of

problems covered. Section 3 presents the identification result. Section 4 presents

the estimation strategy. Section 5 details the application. Section 6 concludes.

The main proofs can be found in Appendix A5.

2 Class of Models

This section defines the notation used throughout the paper and the class of

problems under study.

2.1 Environment

Let N = {1, . . . , N}, L = {1, . . . , L}, and T = {1, . . . , T} denote the set of

consumers, goods, and periods for which data are observable, respectively. I denote

consumption by c ∈ C = RL
++.

12 For each good l ∈ L, there is an output Fl

produced using a set of variable inputs al ∈ Al = RAl
++ and a set of fixed inputs

z ∈ Z ⊆ RZ
++, where Al, Z ∈ N are natural numbers. The set of all variable inputs

is denoted by A = RA
++, where A = A1 + · · · + AL. A data set for consumer i is

12I use bold font to denote vectors and follow the convention that vectors are vector columns.
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denoted by xi := {(Fi,t, ci,t,ai,t, zi,t)}t∈T .

Let u : C×A → R be a utility function that is twice continuously differentiable,

increasing in c, and decreasing in a. Define the set of all such utility functions by

U . Let I denote the set of characteristics defining the consumer preferences. From

the econometrician point of view, consumers have preferences given by a random

utility function u : I → U . A consumer is a draw i ∈ I with preferences ui.

2.2 The Consumer Problem

The class of problems considered in this paper is that of a set of consumers be-

having as if maximizing their utility function:

max
(c,a)∈C×A

ui(c,a) (1)

subject to a constraint of the form

F̃i(a, zi,t,ωi,t)
′c ≤ yi,t, (A)

or

c ≤ F̃i(a, zi,t, ωi,t), (B)

where the production function F̃i,l : Al × Z × R → R++ is continuously differ-

entiable and monotone13, ωi,l,t ∈ R is the productivity shock of the production

function, and yi,t > 0 is observed expenditure in period t ∈ T . I assume that the

constraints of the problem hold with equality at the observed data and that the

13The production function is assumed decreasing in a for budgets of type A and increasing
in a for budgets of type B. For ease of exposition, I assume that the production function shares
the same type of monotonicity in z as it does in a.
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production function F̃l has no variables in common with F̃l′ for any l′ ̸= l.14

Example 1. (Price Search) Consider a model of price search similar to Aguiar

and Hurst (2007) with a concave utility function u(c, a) that is increasing in con-

sumption (c) and decreasing in search intensity (a). The log price function is

log(F (a, z, ω)) = α0 + α1 log(a) + α2z + ω, where α0, α1 < 0, and α2 are pa-

rameters, z is a variable affecting prices paid such as shopping needs, and ω is a

productivity shock. The budget is F (a, z, ω)c = y, where y is income.

Example 2. (Household Production) Consider a model of household production

similar to Benhabib, Rogerson and Wright (1991) with a utility function given

by u(cm, ch, am, ah) = log(cm + ch) + α log(1− am − ah), where cm is the market

good, ch is the homemade good, am is the time spent working, ah is the time spent

working home, and α > 0 is the value of leisure. The household can use am and

ah to obtain market and homemade goods, i.e. cm = wam and ch = F (ah, ωh),

where w is the wage and ωh is the household productivity from home working.

Example 3. (General Equilibrium) Consider a general equilibrium model of con-

sumption and labor choice. The firm maximizes profit pF (a1, a2) − ra1 − wa2,

where p is the price of the output, a1 is capital, a2 is labor, r is the marginal re-

turn of capital, and w is the marginal return of labor. A representative consumer

has a utility function u(c, l − a2), where c is consumption and 1 − a2 is leisure.

The budget constraint is c = F (a1, a2).

14The production functions have no variables in common in the sense that Al

⋂
Al′ = ∅ for

all l ̸= l′.
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3 Identification

This section defines the identified set and investigates identification in the class of

models.

3.1 Identified Set

Let Θu and ΘF be compact subsets of the Euclidean space. For each consumer

i ∈ N , let θ0
ui

∈ Θu be a finite-dimensional parameter of the true utility function

and θ0
Fi

∈ ΘF be a possibly infinite-dimensional parameter of the true production

functions. In what follows, I may write the dependence of the utility function

and the production functions on those parameters explicitly by ui(c,a;θui
) and

F̃i(a, z, ω;θFi
) when relevant. The identified set for a consumer i ∈ N is defined

as

ΘI(xi) := {(θui
,θFi

) ∈ Θu ×ΘF : xi solves (1)} .

In words, the identified set contains every combination of parameters that are

consistent with the utility maximization problem at the observed data. The

model is said to be point identified if the identified set is single-valued such

that ΘI(xi) = {(θ0
ui
,θ0

Fi
)}, the utility function is said to be point identified if

ΘI(xi) = {(θ0
ui
,θFi

), θFi
∈ ΘF}, and the production functions are said to be

point identified if ΘI(xi) = {(θui
,θ0

Fi
), θui

∈ Θu}. The next section investigates

identification by letting T → ∞.

3.2 Identification

The first condition for identification is that the consumer problem has a unique

solution.
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Assumption 1. The following statements hold:

(i) The utility function is concave and parameterized by a finite-dimensional

parameter θui
.

(ii) The production functions are convex (concave) for budgets of type A (B).

Assumption 1 imposes mild shape restrictions that guarantee a unique solution

to the consumer problem. This is because a downward sloping convex production

function leads to a convex budget set for budgets of type A, whereas an upward

sloping concave production function leads to a convex budget set for budgets of

type B. The requirement that the utility function be parameterized is necessary to

learn about preference parameters from the marginal rate of substitution (MRS).

Importantly, this assumption ensures that there is a unique MRS tangent to the

budget at the chosen allocations.15 Next, I assume that productivity shocks are

Hicks-neutral.

Assumption 2. For all l ∈ L, F̃i,l(ai,l,t, zi,t,ωi,t;θFi
) = Fi,l(ai,l,t, zi,t;θFi

)e−ωi,l,t.

Assumption 2 implies that productivity shocks do not change marginal rates of

substitution between variables (ci,l,ai,l,t) that pertain to the same group. It is

necessary for identification as its multiplicatively separable structure allows to ob-

tain restrictions that are independent from productivity shocks. Hicks-neutrality

is a widely used specification in the production function literature and includes as

a common empirical specification the log-linear regression. Lastly, I require that

productivity shocks induce changes in optimal input allocations.

Assumption 3. Income expansion paths for variable inputs are nonzero such that

∂ai,l,t

∂ωi,l,t
̸= 0 for all l ∈ L.

15Note that goods cannot be perfect complements as the utility function would not be differ-
entiable. In that case, the MRS may not be unique.
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This assumption ensures that the model can generate sufficient variation in

the optimal allocations a to identify production functions. Indeed, Hicks-neutral

productivity shocks induce no substitution effect when there is a single good.

Thus, Assumption 3 guarantees that productivity shocks induce variation from

their income effects. The following result characterizes identification in the class

of models.

Theorem 1. Suppose Assumptions 1-3 hold. The utility function is identified

up to a monotone transformation if and only if the log production functions are

identified up to an additively separable function of z.

The idea behind Theorem 1 is to use the consumer problem to derive cross-

equation restrictions between preferences and production functions. Precisely,

these restrictions state that the rate of change of the log production functions is

proportional to the MRS. Since the MRS is invariant to monotone transformations

of the utility function, the production functions are also invariant to such transfor-

mations. If preferences are known, the cross-equation restrictions identify partial

derivatives of the log production functions. The key is to note that these partial

derivatives can be integrated to identify the log production functions up to a con-

stant of integration that is a function of z. Intuitively, since the utility function

does not include fixed inputs z, there is no structure on z that can propagate from

preferences to production functions. Conversely, if log production functions are

known up to an additively separable function of z, the cross-equation restrictions

identify preference parameters that enter the MRS.

Theorem 1 implies that it may be possible to identify preferences through

the production function under weaker assumptions. This is because the utility

derived from a set of goods is unknown, but the output produced from a set of
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inputs is observed. The additional information available on the production side

can facilitate (partial) identification, an observation exploited in the application.

Conversely, preferences may be known such as in a macroeconomic model. There,

Theorem 1 implies that a set of production parameters can be obtained for free.

A consequence of Theorem 1 is that cross-sectional heterogeneity in preferences

and production functions must be the same.

Corollary 1. Suppose Assumption 1-3 hold. Two consumers have identical utility

functions up to a monotone transformation if and only if their log production

functions are identical up to an additively separable function of z.

This result implies that a model where consumers have heterogeneous preferences

but identical production functions would be inconsistent.

4 Estimation Strategy

In this section, I derive nonparametric restrictions that exhaust the empirical

content of the class of models and propose an estimation strategy that can be

used to make inference even if the model is partially identified.

4.1 Shape Restrictions

In what follows, it will be useful to define what it means for a bundle to be revealed

preferred to another directly from the data. Let ⊙ define the Hadamard product

such that for any two vectors v and ṽ of equal dimension, (v ⊙ ṽ)l = vlṽl.

Definition 1. For any s, t ∈ T , a bundle (ci,t,ai,t) is said to be directly revealed

preferred to a bundle (ci,s,ai,s) if Mi,t(ci,s,ai,s) =
(
Fi(ai,s, zi,t) ⊙ e−ωi,t)

)′
ci,s −
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(
Fi(ai,t, zi,t)⊙ e−ωi,t

)′
ci,t ≤ 0.16

Next, I define what it means for a utility function to rationalize a data set.

Definition 2. A utility function ui : C ×A → R rationalizes the data xi if, for all

(ci,t,ai,t) and (c,a), Mi,t(c,a) ≤ 0 implies ui(ci,t,ai,t) ≥ ui(c,a).

This definition states that within the set of affordable bundles, those that are

more expensive give a higher utility level. A data set should be rationalizable if

observed bundles can be thought of as arising from the maximization of a utility

function.

For convenience, let e−ωi,l,t denote e−ωi,l,t stacked Al times and ci,l,t denote ci,l,t

stacked Al times, where Al is the dimension of al. The following result relates

rationalizability by a utility function with conditions that can easily be checked

in the data.

Theorem 2. The following statements are equivalent:

(i) The data set xi is rationalized by a utility function that is continuous, in-

creasing in c, decreasing in a, and concave, and where the production func-

tions are convex.

(ii) There exist numbers ui,t, λi,t > 0, Ḟ k
i,l,t < 0, ωi,l,t, ϕi,l,t > 0, and F̈ k

i,l,t < 0

such that, for all s, t ∈ T , the following system of inequalities is satisfied

ui,s ≤ ui,t + λi,t

[
F ′

i,t(ci,s − ci,t) +
∑
l∈L

(
Ḟi,l,t ⊙ e−ωi,l,t ⊙ ci,l,t

)′
(ai,l,s − ai,l,t)

]
ϕi,l,s ≥ ϕi,l,t + Ḟ ′

i,l,t(ai,l,s − ai,l,t) + F̈ ′
i,l,t(zi,s − zi,t) ∀l ∈ L,

16The definition for budgets of type B is the same with Mi,t(ci,s,ai,s) =
(ci,s − F (ai,s, zi,t)e

−ωi,t) − (ci,t − F (ai,t, zi,t)e
−ωi,t). The results below also hold for this type

of budgets.
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and ϕi,l,te
−ωi,l,t = Fi,l,t for all l ∈ L and t ∈ T .

In words, this result states that any data set rationalized by the model must

satisfy the inequalities in Theorem 2 (ii) provided the utility function is concave

and the production functions are convex. Conversely, any data set that satisfies

the inequalities in Theorem 2 (ii) is rationalized by a concave utility function

where the production functions are convex.17

The first set of inequalities in Theorem 2 (ii) captures the concavity of the

utility function, where the numbers ui,t and λi,t > 0 can be thought of as utility

numbers and marginal utilities of expenditure. The sign of Ḟ k
i,l,t captures the

monotonicity of the production function with respect to aki,l,t and depends on the

application. In a model of price search similar to the one of Example 1, Ḟi,t < 0

captures the fact that an increase in search intensity decreases prices paid.

The second set of inequalities in Theorem 2 (ii) captures the convexity of

the production functions, where the numbers ϕi,l,t can be thought of as output

numbers.18 The sign of Ḟ k
i,l,t captures the monotonicity of the production function

with respect to aki,l,t and are the same numbers as those appearing in the concavity

of the utility function. Likewise, the sign of F̈ k
i,l,t captures the monotonicity of the

production function with respect to zki,t. Lastly, the restriction that ϕi,l,te
−ωi,l,t =

Fi,l,t captures the fact that the candidate output should match the actual output

at the observed data.

17The Appendix shows that the Generalized Axiom of Revealed Preference (GARP) is equiv-
alent to rationalizability without the nice structure on the utility and production functions. A
similar proof is also in Forges and Minelli (2009).

18In models with budgets of type B, it is more natural to assume that the production function
is concave. The statement of the theorem can be modified accordingly.
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4.2 Characterization via Moment Functions

Let X := RL
++ ×C ×A and E|X be the support of the latent variables conditional

on X . Moreover, let xi ∈ X denote the observed data and ei ∈ E|X denote the

latent variables. The restrictions of the model derived in Theorem 2 (ii) imply

the following moment functions for all l ∈ L and all s, t ∈ T :

gui,s,t(xi, ei) := 1

(
ui,s − ui,t − λi,t

[
F ′

i,t(ci,s − ci,t)

+
∑
l∈L

(
Ḟi,t ⊙ e−ωi,l,t ⊙ ci,l,t

)′
(ai,l,s − ai,l,t) ≤ 0

])
− 1

gFi,l,s,t(xi, ei) := 1

(
ϕi,l,s − ϕi,l,t −

[
Ḟ ′

i,l,t(ai,l,s − ai,l,t) + F̈ ′
i,l,t(zi,s − zi,t) ≤ 0

])
− 1,

where the latent variables further satisfy their support constraints: λi,t > 0,

Ḟi,t < 0, F̈i,t < 0, and ϕi,l,te
−ωi,l,t = Fi,l,t. In addition, note that a model may have

additional restrictions on the productivity shock, written as gωi,l,t(xi, ei). These re-

strictions could represent orthogonality conditions and depend on the application.

In general, these additional restrictions may be necessary to refute the model.

Let gi(xi, ei) := (gu
i (xi, ei)

′, gF
i (xi, ei)’, g

ω
i (xi, ei)

′)′ denote the set of moment

functions that characterize the model. Furthermore, let du, dF and dω denote their

respective number of constraints. Arbitrary combinations of these sets of functions

are denoted with their superscripts bundled together. For example, gu,ω
i (xi, ei) is

the set of moment functions on the utility function and the productivity shock.

Note that the moment functions gi(xi, ei) depend on unobservables. As such, the

latent variables have to be drawn from some distribution for the moment functions

to be evaluated.
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4.3 Statistical Rationalizability

Let MX and ME|X denote the set of all probability measures defined over X

and E|X , respectively. Moreover, let Eµ×π[g(x, e)] :=
∫
X

∫
E|X g(x, e) dµ dπ, where

µ ∈ ME|X and π ∈ MX . The moment functions previously defined allow me to

define the statistical rationalizability of a data set.19

Definition 3. A data set x := {xi}i∈N is statistically rationalizable if

inf
µ∈ME|X

∥Eµ×π0 [g(x, e)]∥ = 0,

where π0 ∈ MX is the observed distribution of x.

That is, the data are statistically rationalizable if there exists a distribution

of the latent variables conditional on the data such that the expected moment

functions are satisfied. In practice, searching over the set of all conditional distri-

butions represents a daunting task. Fortunately, the following result shows that

the problem can be greatly simplified without loss of generality.20

Theorem 3. The following are equivalent:

(i) A data set x is statistically rationalizable.

(ii) min
γ∈Rdω

∥Eπ0 [h̃(x;γ)]∥ = 0,

where

h̃i(xi;γ) :=

∫
ei∈E|X gω

i (xi, ei) exp(γ
′gω

i (xi, ei))1(g
u,F
i (xi, ei) = 0) dη(ei|xi)∫

ei∈E|X exp(γ ′gω
i (xi, ei))1(g

u,F
i (xi, ei) = 0) dη(ei|xi)

,

19This definition follows the notion of identified set in Schennach (2014).
20See Aguiar and Kashaev (2021) for the weak technical assumptions required for this result

to hold.
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and where η(·|xi) is an arbitrary user-specified distribution function supported on

E|X such that Eπ0 [log(Eη[exp(γ
′gω(x, e))|x])] exists and is twice continuously dif-

ferentiable in γ for all γ ∈ Rdω .

Proof. See Theorem 2.1 in Schennach (2014) and Theorem 4 in Aguiar and Kashaev

(2021).

In words, Theorem 3 (ii) averages out the unobservables in gi(xi, ei) according

to some conditional distribution.21 The particularity of η(·|xi) is to preserve the

set of values that the objective function can take before the latent variables have

been averaged out. As such, any minimum achieved under η(·|xi) can also be

achieved under µ.

The dimensionality of the problem is further reduced by noting that the con-

cavity of the utility function and the convexity of the production functions only

restrict the conditional support of the unobservables. This can be seen from the

fact that if the data are exactly statistically rationalizable, then the moment func-

tions gu,F
i (xi, ei) should hold exactly for each consumer. Thus, one can draw from

the conditional distribution η̃(·|xi) := 1(gu,F
i (xi, ·) = 0)η(·|xi) rather than leaving

the moment functions gu,F
i (xi, ·) in the optimization problem.

In most applications, the distribution η̃(·|xi) may be taken to be proportional

to a normal distribution:

dη̃(·|xi) ∝ exp
(
−||gω

i (xi, ei)||2
)
,

where the value of the mean and variance are inconsequential for the validity of the

result. To draw from this distribution, the first step is to obtain latent variables

21Schennach (2014) shows the existence of an admissible conditional distribution η(·|xi) and
gives a generic construction for it.
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that satisfy the moment functions gu,F
i (xi, ei) and can be achieved by rejection

sampling. Then, a standard Metropolis-Hastings algorithm can be used to draw

from the distribution.22

4.4 Statistical Inference

The notion of statistical rationalizability together with Theorem 3 provides a

feasible way of checking whether the data are consistent with the model. Indeed,

let

ˆ̃h(γ) :=
1

N

N∑
i=1

h̃i(xi,γ)

and

ˆ̃Ω(γ) :=
1

N

N∑
i=1

h̃i(xi,γ)h̃i(xi,γ)
′ − ˆ̃hi(γ)

ˆ̃hi(γ)
′

denote the sample analogues of h̃ and its variance, respectively. Furthermore, let

ˆ̃Ω− denote the generalized inverse of the matrix ˆ̃Ω. Schennach (2014) shows that

the test statistic

TSN := N inf
γ∈Rdω

ˆ̃h(γ)′ ˆ̃Ω−(γ)ˆ̃h(γ)

is stochastically bounded by a χ2 distribution with dω degrees of freedom (χ2
dω
).

As such, the rationalizability of a data set can be checked by comparing the value

of the test statistic against the critical value of the chi-square distribution with dω

degrees of freedom. Note that the panel structure contributes to the test statistic

via the shape constraints as they give cross-equation restrictions that limit the

support of the latent variables across time. Inference on an expected parameter

22Further details about the implementation are given in Appendix A3.
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of interest θ0 can be made by adding a moment function of the form:

gθi (xi, ei)− θ0,

where θ0 may be thought of as a parameter of the production function. A conser-

vative 95% confidence set on θ0 is obtained by inverting the test statistic:

{θ0 : TSN(θ0) ≤ χ2
dω+dθ,0.95

},

where TSN(θ0) is the test statistic at a fixed value of θ0 and dθ is the number of

moments on parameters of interest.

4.5 Related Literature

The previous methodology provides an approach to conduct specification testing

and inference with unrestricted heterogeneity in preferences. In this respect, it

is similar to Kitamura and Stoye (2018) and Deb et al. (2023). However, their

framework only assumes access to a repeated cross-section of consumers rather

than a panel of consumers. As such, they analyze the data through a random

utility framework where preferences are unrestricted in the cross-section and in

time.23 In contrast, the current approach analyzes the data through a random

utility framework where preferences are unrestricted in the cross-section but fixed

in time. Furthermore, the current framework assumes that individual choices are

observed rather than only the distribution of choices.24 More importantly, the

current statistical framework can analyze models that include moment conditions.

23Strictly speaking, they assume that the distribution of preferences is time invariant.
24This allows me to impose individual rationality. In contrast, a data set can be stochastically

rationalizable even if it contains individuals that are not rational (Im and Rehbeck, 2022).
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This feature is crucial for many structural models including the class of models

considered in this paper.

5 Application to Price Search

This section considers an application to price search as a means to show the

feasibility and effectiveness of the approach. I propose a flexible model of price

search to test some of the key assumptions in the literature, to make inference on

the impacts of search intensity on prices paid that is robust to measurement error,

and to quantify the size of search costs.

5.1 Model

Consider a model of price search where consumers have a price search technology

that can be used to search for lower prices. The consumer is assumed to know

her realization of search productivity (ω) and to choose consumption (c) and

shopping intensity (a) accordingly. Formally, in each period the consumer behaves

as if maximizing her quasilinear utility function subject to satisfying her budget

constraint:

max
(c,a,r)∈C×A×R

ui(c,a) + ri,t s.t. pi(a,ωi,t)
′c+ ri,t = yi,t, (2)

where ui : C×A → R is a utility function that is twice continuously differentiable,

increasing in consumption, decreasing in shopping intensity, and concave, ri,t is the

numeraire good, pi(a,ωi,t) is a vector of twice continuously differentiable good-

specific price functions pi,l : R++ ×R → R++ where pi,t := pi(ai,t,ωi,t), and yi,t is

income. The econometrician only observes the data set xi := {(pi,t, ci,t,ai,t)}t∈T .
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The model has two distinctive features. First, the consumer gets utility from

consumption and disutility from shopping intensity. The latter captures the op-

portunity cost of time such as foregone earnings and leisure. Second, the consumer

can pay lower prices by shopping more frequently. The extent by which shopping

intensity reduces prices paid depends on the consumer ability to take advantage

of sales and other deals such as coupons. Thus, the consumer problem boils down

to finding the optimal trade-off between utility from consumption and disutility

from shopping intensity.

This trade-off is illustrated in Figure 1 in the case of a single good. The

consumer has to choose a bundle that lies within her budget set represented by

the shaded area. The bundle that maximizes the consumer utility is the point

where the indifference curve is tangent to the budget line, denoted (c∗, a∗).25

−3

O

1

2

a∗

c∗

Indifference Curve

Budget Set

a

c

Figure 1: Optimal Choice with Price Search

It is important to note that the quasilinearity assumption could be relaxed in

25In Appendix A1, I show that my model can be extended to home production and relates it
to that of Aguiar and Hurst (2007).
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the model. The assumption is motivated by the fact that the data in my appli-

cation span a period of six months for which changes in income are negligible.

Moreover, the data focus on food consumption which tends to be income inelas-

tic.26 Since the quasilinear structure provides a useful measure of utility in terms

of dollar, it will allow me to get a straightforward interpretation of search costs.

A description of the data set is provided in Appendix A4.

5.2 Environment

Given the fundamental unobservability of preferences, it is prudent to keep as-

sumptions on the utility function minimal. On the contrary, the price functions

are partially observed since one has data on prices paid at many values of shopping

intensity. As such, one should feel comfortable making more stringent assumptions

on the latter. To gain insights on the behavior of the price functions, Figure 2 dis-

plays how log prices averaged across consumers (henceforth, expected log prices)

vary with log number of shopping trips in the data, where shopping trips capture

shopping intensity.

Consistent with the price search hypothesis, Figure 2 shows a negative rela-

tionship between prices paid and shopping intensity. Moreover, we can see that

the change in expected log prices as the log number of shopping trips increases can

be approximated by a linear function. Thus, I follow the price search literature

and assume that the price functions are log-linear in shopping intensity.27

Assumption 4. For all l ∈ L, the log price function is given by

log(pi,l(ai,l,t, ωi,l,t)) = α0
i,l + α1

i,l log(ai,l,t)− ωi,l,t,

26Quasilinearity is also used by Echenique, Lee and Shum (2011) and Allen and Rehbeck
(2020) in a similar scanner data set on food expenditures.

27See, for example, Aguiar and Hurst (2007) and Arslan, Guler and Taskin (2021).
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Figure 2: Average Log Price by Log Number of Shopping Trips

Note: The vertical axis reports the average log price, where the average is taken across con-
sumers.

where α0
i,l ∈ R denotes the intercept and α1

i,l ≤ 0 denotes the elasticity of price

with respect to shopping intensity.

Assumption 4 implies that prices paid decrease at a decreasing rate as shopping

intensity or search productivity increases. This requirement captures decreasing

marginal returns that arise due to the increasing difficulty of finding discounts

surpassing the current best discount.28

Conditional on the log-linear specification assumed in Assumption 4, price

functions are otherwise free to vary across goods and consumers. This heterogene-

ity is important as goods may not be subject to the same discounts and consumers

may not have access to the same set of stores. Furthermore, note that the price

function for any good l ∈ L only depends on the shopping intensity on that

good. This precludes complementarities that may naturally arise, for instance, if

28Stigler (1961) shows that the expected value of the minimum price is convex in search,
therefore providing a theoretical motivation for this choice.
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two goods are in a same aisle in a store. This issue is largely mitigated in my

application as goods are aggregated to coarse categories.

A glance at Figure 2 shows that the log-linear relationship does not hold per-

fectly for any given good. These deviations are normal in any data set and are

accounted for by search productivity (ω) in the price functions. It is possible that

some consumers that go on many shopping trips may do so because they do not

find satisfactory discounts. This could explain the uptick in prices paid for larger

values of shopping trips on frozen foods and packaged meat. Alternatively, those

upticks could reflect the purchase of higher quality goods on those shopping trips.

For example, consumers that go on more shopping trips may also purchase more

expensive goods.

Although the log-linear relationship is imperfect for any given good, Figure

2 shows that it fits well across goods. That is, one is able to fit a line almost

perfectly by averaging expected log prices across goods. Given Assumption 4, this

implies that the expected average search productivity is zero. In other words, the

unobserved effects of search productivity on prices paid cancel out on average.

Assumption 5. For all t ∈ T , E [ωt] = 0, where ωi,t := L−1
∑L

l=1 ωi,l,t denotes

the average search productivity across goods.

Assumption 5 allows search productivity to vary for each individual and each

good as long as the overall search productivity remains constant.29 Permitting

search productivity for a particular good to change over time is important in my

application because of the coarse aggregation of the data. Indeed, since a consumer

may purchase different baskets of goods in different time periods, prices may vary

29The expected search productivity and the expected intercept in the price function are not
separately identified. Thus, the empirical bite of Assumption 5 is the time invariance of the
expected search productivity.
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due to variations in the composition of the baskets of goods.

Other than for this mild centering condition, Assumption 5 is quite general as

it does not presume anything about the underlying stochastic process of search

productivity. Conditional on the expected average search productivity being time-

invariant, it allows individual-specific search productivity to vary arbitrarily with

both observables and unobservables. In particular, it includes Markovian processes

often assumed in the production function literature.30

Another reason why the data may not exhibit a perfect log-linear relationship

is the presence of measurement error. Indeed, Einav, Leibtag and Nevo (2010) use

transactions from a large retailer in order to document the extent of measurement

error in the NielsenIQ Homescan Dataset on which Figure 2 is derived. They

show that measurement error in prices is severe and document that the expected

difference between observed log prices and true log prices is zero.31 Let (p∗
i,t)t∈T

denote true prices paid by the consumer. The previous information motivates the

following assumption on measurement error.

Assumption 6. For all l ∈ L and t ∈ T , the following moment condition holds:

E [log(pl,t)] = E
[
log(p∗l,t)

]
.

Assumption 6 says that, in expectation, observed log prices and true log prices

are the same for each good and time period. Together, they yield a total of

L · T moments on measurement error, where measurement error is defined as

mi,t := log(pi,t)− log(p∗
i,t).

32 The structure of measurement error implies that for

30See, for example, Gandhi, Navarro and Rivers (2020).
31Additional details about the data and measurement error are given in Appendix A4.
32This definition makes no assumption on the way measurement error arises. For example,

measurement error could be additive or multiplicative and could be correlated across goods or
time periods.
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each category of goods in Figure 2, the true value of the data points above (below)

the log-linear relationship could be lower (higher) as long as measurement error

averages out.

Lastly, I bound the support of the elasticity of price with respect to shopping

intensity to strengthen the power of the statistical test.

Assumption 7. For all l ∈ L, α1
i,l ∈ [−1, 0].

This assumption constrains the elasticity of price with respect to shopping

intensity to be in [−1, 0] for every good l ∈ L and is motivated by the estimate of

Aguiar and Hurst (2007). Indeed, they obtain a point estimate of −0.074 for the

elasticity of price with respect to shopping intensity using the Homescan 1993-

1995.33 As such, Assumption 7 should give enough flexibility for the needs of the

data.

Under the previous assumptions, the concavity of the utility function and the

log-linearity of the price functions can be refuted by the data. Intuitively, to see

why price search is refutable, note that Assumptions 4-5 imply that the aver-

age expected log price paid must decrease whenever shopping intensity increases.

Therefore, inconsistencies with price search arise whenever this relationship is vi-

olated in the data.34 Hence, if any of the assumptions is inconsistent with the

data, this will turn up in the statistical test and the model may be rejected as a

consequence.

33Their estimate is obtained using an instrumental variable approach and is for a single ag-
gregated good.

34See Appendix A2 for analytical power results.
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5.3 Price Search Rationalizability

The environment defined in the previous section allows me to define a notion

of statistical rationalizability as defined in Section 4 with the moment functions

specialized to the model.35 A data set consistent with this notion is said to be

price search rationalizable (PS-rationalizable).

Conditional on the data being consistent with PS-rationalizability, the next

step is to make inference on parameters of interest. First, I show that inference on

the true expected elasticity of price with respect to shopping intensity is possible

in the model.

Proposition 1. The true expected elasticity of price with respect to shopping in-

tensity is given by

E

[
∂ log(p∗t )

∂ log(at)

]
=

1

L
E
[
α1
]
,

where the line over
∂ log(p∗t )
∂ log(at)

and α1 denote the average across goods.

Proposition 1 states that the true expected effect of an increase in shopping inten-

sity on the price paid can be recovered. The reason why it can be achieved in the

model is that Assumption 5 restricts the expected (average) search productivity to

be time-invariant. Therefore, any variation in expected log prices must be caused

exclusively by variations in shopping intensity. As such, I can make inference on

the true expected elasticity of price with respect to shopping intensity (θ0) by

adding the moment function:

gαi (xi, ei) :=
1

L
α1
i − θ0.

Next, I am interested in learning about search costs. It is possible to see that

35The definition of statistical price search rationalizability is derived in Appendix A6.
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inference on a lower bound of the expected search cost (θ0) can be made by adding

the moment function:

gsci (xi, ei) := − 1

L · T
∑

l∈L,t∈T

ṗi,l,tai,l,tci,l,t − θ0.
36

For either of these objects, inference is made by test inversion.

5.4 Empirical Results

The application aims to check whether a panel data set can be rationalized by a

heterogeneous model of price search under mild centering conditions on productiv-

ity shocks and measurement error in prices. If the data are compatible with price

search behavior, then inference on the impacts of price search can be computed.

Summary statistics on the sample are displayed in Table 1.

Table 1: Summary Statistics

Variable
Household Size Annual Income Educationa

1 2 3+ < 40k [40k, 70k] > 70k ≤ High school Some college ≥ College

Observations 1645 6364 3539 4133 3849 3566 4070 3532 3946

Total 11548 11548 11548

a If both spouses are present in a household, the education of the male member is reported.

By applying the methodology of Section 4, I find that PS-rationalizability is

not rejected by the data at the 95% confidence level among single households.

More precisely, I obtain a test statistic of 36.38, which is below the chi-square

critical value of 43.77. In contrast, I find that PS-rationalizability is rejected

by the data in couple households and households of many members with a test

statistic of 443.38 and 230.01, respectively.

36The derivation is available in Appendix A6.
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Since the model is not rejected by the data on single households, I can invert

the statistical test to obtain a conservative 95% confidence set on the expected

elasticity of price with respect to shopping intensity. Doing so, I obtain a confi-

dence set of [−0.2,−0.1]. That is, a doubling of shopping intensity decreases prices

paid by about 15% on average. Likewise, I find that the conservative 95% confi-

dence set on the lower bound of the expected search cost is [10, 50]. In comparison,

the average observed expenditure on any good is 43.14 dollars.

6 Conclusion

This paper shows that the identification of preferences is necessary and sufficient

to identify production functions in a large class of models where consumers are

involved in production. This observation results from cross-equation restrictions

entailed by the consumer problem. I provide a simple estimation strategy that

exploits natural shape restrictions to make inference on both production functions

and preferences. In my empirical application, I recover the impacts of shopping

intensity on prices paid and quantify the size of search costs. I find that price

search is effective in reducing prices paid but comes at a significant utility cost.

As such, my results highlight the importance of accounting for search costs to

evaluate the consumer welfare. In particular, recognizing the utility cost from

price search may provide new insights on within- and between-group inequalities.
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Appendix

A1: Relationship with Models of Household Production

Although the focus of my application is on the price function, the framework

of the model is consistent with one of household production similar in spirit to

that of Becker (1965). As an illustration, I extend my model to one of household

production and shows that it has close ties with that of Aguiar and Hurst (2007).

Suppose that, in addition to spending time shopping, the household can spend

time in home production denoted by h ∈ R++. By using that time input along with

market goods, the household can produce some homemade good K by using its

(concave) home production function f(h, c).37 The household problem therefore

becomes

max
(c,a,K,h)∈C×A×R2

++

u(a, K, h) s.t. p(a,ωt)
′c = yt

f(c, h) = K.

One can get rid of the second constraint by substituting it for K in the utility

function, yielding

max
(c,a,h)∈C×A×R++

u(a, f(c, h), h) s.t. p(a,ωt)
′c = yt.

Assuming the opportunity cost of time is additively separable, linear, and identical

37One can think of market goods as comestible such as eggs, sugar and pecans. By spending
h unit of time cooking, the household can transform these “raw goods” into a pecan pie, the
final good consumed by the household.
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for the shopper and the home producer, the problem boils down to

max
(c,a,h)∈C×A×R++

u(f(c, h)) + µ′
ta+ µth s.t. p(a,ωt)

′c = yt,

where µt denotes the disutility from the time spent on either activity. Since u(·)

and f(·, ·) are both unobservable concave functions and u(·) is increasing, this

maximization problem is observationally equivalent to

max
(c,a,h)∈C×A×R++

f(c, h) + µ′
ta+ µth s.t. p(a,ωt)

′c = yt,

and we have thereby recovered a model with the same implications to that of

Aguiar and Hurst (2007).38 To see why, assume the solution is interior and take

the first-order conditions:

∂f

∂c
= λtp(a,ωt)

µ = λt
∂p(a,ωt)

∂a
⊙ c

µ = −∂f

∂h
.

It follows that the marginal rate of transformation (MRT) between time and goods

in shopping equals the MRT in home production:

∂f

∂h
/
∂f

∂cl
= −

∂pl(al,ωl,t)

∂al
· cl

pl(al, ωl,t)
∀l ∈ L.

This derivation shows that the household production version of my model nat-

urally extends that of Aguiar and Hurst (2007). Conditional on knowing the price

38Despite that the two maximization problems are observationally equivalent, eliminating the
utility function changes the interpretation of the model.
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function, this last equation can be used to identify the home production function,

a point that was cleverly exploited by Aguiar and Hurst (2007) in a parametric

setting.

A2: Power Analysis

In this section, I show that the model is refutable under Assumption 4-7. I then

provide empirical evidence that these additional restrictions are not necessary for

the model to be rejected by the data.

Convexity of the Log-linear Shopping Technology

Let the price function for any good l ∈ L be log-linear as specified in Assumption

4 such that:

log(pl,t(al,t, ωl,t)) = α0
l + α1

l log(al,t)− ωl,t.

It is easy to see that, for any l ∈ L, the Hessian of the log price function is

H(al,t, ωl,t) =

− α1
l

a2l,t
0

0 0

 .

The principal minors are D1 = − α1
l

a2l,t
≥ 0, D2 = 0, and D3 = 0. Accordingly, the

log price functions are convex and the price functions logarithmically convex.39

Falsifiability of Price Search

Suppose that Assumption 4-7 are satisfied and let L = {1, 2}, T = {1, 2}. Almost

39A function f is logarithmically convex if the composition of the logarithm with f is itself a
convex function.
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surely, let observed prices be such that p1 = [1, 2]′, p2 = [3, 4]′, shopping intensity

be such that a1 = [1, 2]′, a2 = [2, 3]′, and consumption be such that ct > 0 for

t = 1, 2.

The convexity of the log price functions implies that for all l ∈ L and s, t ∈ T ,

we have

log

(
p(al,s, ωl,s)

p(al,t, ωl,t)

)
≥ ∇ap(al,t, ωl,t)

p(al,t, ωl,t)
(al,s − al,t) +

∇ωp(al,t, ωl,t)

p(al,t, ωl,t)
(ωl,s − ωl,t).

40

The above expression can be written more concisely as

log

(
p∗l,s
p∗l,t

)
≥ ∇ap(al,t, ωl,t)

p∗l,tcl,t
(al,s − al,t)− (ωl,s − ωl,t) ∀s, t ∈ T .

Summing up these inequalities for each good l ∈ L and dividing by L gives

1

L

L∑
l=1

log

(
p∗l,s
p∗l,t

)
≥ 1

L

L∑
l=1

∇ap(al,t, ωl,t)

p∗l,tcl,t
(al,s − al,t)− (ωs − ωt) ∀s, t ∈ T ,

where ωt :=
1
L

∑L
l=1 ωl,t for all t ∈ T . Taking the expectation for s = 1, t = 2 and

using the assumptions that E[log(pt)] = E[log(p∗
t )] and E[ωt] = 0 for all t ∈ T , we

get

0 >
1

L

L∑
l=1

(E [log(pl,1)]− E [log(pl,2)]) ≥ − 1

L

L∑
l=1

E

[
∇ap(al,2, ωl,2)

p∗l,2cl,2

]
. (3)

Noting that the random variable on the right-hand side is always negative, it

follows that the negative of its expectation is positive: −E
[
∇ap(al,2,ωl,2)

p∗l,2cl,2

]
≥ 0 for

all l ∈ L. Clearly, inequality (3) yields a contradiction. In other words, the data

are inconsistent with the model provided the price functions are logarithmically

40Note that this expression is well-defined since prices are strictly positive.
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convex, and that is the case for log-linear price functions.

A3: Implementation

This section provides a pseudo-algorithm of the ELVIS method developed by

Schennach (2014) specialized to my model of price search.

Pseudo-Code

Step 1

• Fix the number of goods L and the number of time periods T .

• Fix the data set x = (xi)i∈N , where xi = (pi,t, ci,t,ai,t)t∈T .

• Fix the moments defining the model: gu
i , g

p
i , g

m
i , g

ω.

• Fix the support of the structural parameters: α1
i ∈ [−1, 0].

• Fix the conditional distribution of the latent variables η̃.

Step 2

for i = 1 : N

• Integrate the latent variables under η̃(·|xi) to obtain h̃i(xi,γ).

end

• Compute ˆ̃h(γ) = 1
N

∑N
i=1 h̃i(xi,γ).

• Compute ˆ̃Ω(γ) = 1
N

∑N
i=1 h̃i(xi,γ)h̃i(xi,γ)

′ − ˆ̃hi(γ)
ˆ̃hi(γ)

′.

• Compute the objective function: ObjFct(γ) = N ˆ̃h(γ)′ ˆ̃Ω(γ)− ˆ̃h(γ).
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Step 3

• Compute TSN = minγ ObjFct(γ).

Step 1 (Construction of η̃)

The distribution η̃ can be taken to be proportional to a normal distribution:

dη̃(·|xi) ∝ exp(−||gm,ω
i (xi, ei)||2),

where gm,ω
i is the set of moments on measurement error and search productiv-

ity. The pseudo-code below details how to construct the conditional distribution

by using rejection sampling and by applying the Metropolis-Hastings algorithm.

Note that tuning parameters from the Metropolis-Hastings algorithm (proposal

distribution and number of iterations) appear in the implementation of ELVIS.

In general, one should aim for an acceptance rate of about 25%. This requires

the user to calibrate the variance of the proposal distribution. In practice, the

acceptance rate of the Metropolis-Hastings algorithm can be computed such that

the user is guided through the process. In what follows, I draw true prices instead

of measurement error as it ensures true prices to be strictly positive. Let R > 0

denote the number of iterations.

while r ≤ R

• Draw candidate latent variables eci = (p∗
i,t,α

0
i ,α

1
i ,ωi,t)t∈T such that their

support constraints are satisfied. Recover ṗi,l,t = α0
i,lα

1
i,la

α1
i,l−1

i,l,t e−ωi,l,t for all

l ∈ L and t ∈ T . Add it to eci .
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• Given xi and eci , check whether the model is satisfied using Theorem 2. If

the model is not satisfied, go a step back.

• Draw ζ from U [0, 1].

• If −
(
||gm,ω

i (xi, e
c
i)||2 − ||gm,ω

i (xi, e
r−1
i )||2

)
> log(ζ), set eri to eci . Else, set eri

to er−1
i .

• Set r = r + 1.

end

Step 2 (Latent Variable Integration)

• Fix xi, η̃, and γ.

• Set h̃i(xi,γ) = 0.

while r ≤ R

• Draw eci proportional to η̃(·|xi).

• Draw ζ from U [0, 1].

• If
[
gm,ω
i (xi, e

c
i)− gm,ω

i (xi, e
r−1
i )

]′
γ > log(ζ), set eri to eci . Else, set e

r
i to er−1

i .

• Compute h̃i(xi,γ) = h̃i(xi,γ) + gm,ω
i (xi, e

r
i )/R.

• Set r = r + 1.

end

A4: Data Set
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This section presents the data set used in my empirical application and discusses

its main source of measurement error.

Sample Construction

For my empirical application, I use the NielsenIQ Homescan Dataset 2011 (hence-

forth referred to as the Homescan). This data set contains information on pur-

chases made by a panel of U.S. households in a large variety of retail outlets. The

data set is designed to be representative of the U.S. population based on a wide

range of annually updated demographic characteristics including age, sex, race,

education, and income.

Participating households are provided with a scanner device and instructed

to record all of their purchases after each shopping trip. The scanner device

first requires participants to specify the date and store associated with each trip.

Then, they are prompted to enter the number of units bought. When an item

is purchased at a store with point-of-sale data, the average weighted price of the

item in that week and store is directly given to NielsenIQ and recorded as the

price paid prior to any coupon. Otherwise, panelists enter the price paid prior

to any deal or coupon using the scanner device. In either case, panelists record

the amount saved from coupons and the final price paid is the recorded price paid

minus coupon discounts.

The Homescan contains information on Universal Product Codes (UPC) be-

longing to one of 10 departments. In order to mitigate issues associated with

stockpiling, I restrict my attention to the following four food departments: dry

grocery, frozen foods, dairy, and packaged meat.41 This selection leaves over a

41This choice implicitly assumes that food is weakly separable from other categories of goods.
This assumption is empirically plausible (Cherchye et al., 2015b), especially when the presence
of measurement error is recognized (Fleissig and Whitney, 2008; Elger and Jones, 2008).
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million distinct UPCs representing about 40% of all products in the Homescan.

For each household, I also aggregate the data to monthly observations to further

reduce stockpiling issues. The resulting UPC prices are calculated as the average

UPC prices weighted by quantities purchased.

To obtain regular observations on each good, I aggregate UPCs to their depart-

ment categories, yielding a total of four “goods”. Since the number of moments

increases multiplicatively with the number of goods in my application, this level

of aggregation will also ensure that the optimization problem remains tractable.

The resulting aggregated prices are calculated as the average UPC prices weighted

by quantities purchased. Even with this layer of aggregation, some households do

not have purchases from each category of goods in every month. Since the model

requires price observations in every time period, I discard those households from

the analysis.42

The data set focuses on households that satisfy the above criteria, participated

in the Homescan from April to September of the panel year 2011, and whose head

household is at least 50 years old such as to exclude potential online shoppers.

The final sample contains 11548 households, 4 aggregated goods, and 6 monthly

time periods.

Measurement error

The data collection process employed by NielsenIQ may induce measurement error

for three reasons. First, conditional on a shopping trip, entry mistakes may arise

as panelists self-report their purchases. Second, when a consumer purchases a

UPC at a store that provides NielsenIQ with point-of-sale data, the price reported

42This also avoids imputing prices of zero consumption goods that would overlook the full
heterogeneity in prices assumed in the model.
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(before coupons) is the weighted average price during that week in that particular

store. Thus, the reported price will be different from the price paid if the store

changes the price during the week. Third, some consumers have loyalty cards

whose discounts are not incorporated into the final price paid.

In a validation study of the Homescan 2004, Einav, Leibtag and Nevo (2010)

use transactions from a large retailer in order to document the extent of mea-

surement error. Consistent with the above observations, they find that price is

the variable most severely hit by measurement error. Specifically, they find that

around 50% of prices are accurately recorded. In contrast, around 90% of UPCs

are accurately recorded by panelists on average. This number increases to 99%

conditional on the quantity being equal to one. Accordingly, I focus exclusively

on measurement error in prices in my application.

Since prices are mismeasured, observed prices (pi,t)t∈T are different from true

prices paid by the consumer (p∗
i,t)t∈T . Using price data from a large retailer, Einav,

Leibtag and Nevo (2010) show that the difference between observed and true log

prices is centered around zero in the Homescan 2004. Formally, one cannot reject

that the difference in sample means of log prices is zero at the 95% confidence

level. As NielsenIQ’s method of data collection has not changed since their study,

I take their finding as support for mean zero measurement error in log prices in

the Homescan 2011.

Details about Sample Construction

The Homescan contains information on purchases made by U.S. households in a

wide variety of retail outlets. After every trip to a retail outlet, information about

the trip is recorded by the panelist via a scanner device. Each trip may have one
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or many UPC purchases. In total, there are 66, 321, 848 purchases in the panel

year 2011. Among them, 43, 432, 246 pertain to the departments of dry grocery,

frozen foods, dairy and packaged meat. Since some purchases in the panel year are

outside of the calendar year 2011, I remove them from the sample. This operation

drops 751, 479 purchases, leaving a total of 42, 680, 767 purchases.

For each household-month, I average UPC prices across trips. Precisely, for

any household i ∈ N and month t ∈ T , the weighted average price for a given

UPC is given by

pi,UPC,t =

∑
tripsi∈t pi,UPC,tripsici,UPC,tripsi∑

tripsi∈t ci,UPC,tripsi

,

where tripsi denotes a trip of household i. This aggregation is only computed for

UPCs that are purchased by a given household in a given month.

The Homescan has a total of 4, 510, 908 distinct UPCs, with 1, 633, 850 that

belong to the four departments considered: dry grocery, frozen foods, dairy, and

packaged meat. To keep the analysis tractable and mitigate stockpiling issues, I

aggregate UPCs to their department categories. For each household-month, the

weighted average price for a given department l ∈ L is given by

pi,l,t =

∑
UPC∈l p̃i,UPC,tci,UPC,t∑

UPC∈l ci,UPC,t

.

Furthermore, I only keep data from April to September. The restriction to

this time window achieves three purposes. First, it increases the plausibility of

the stability of preferences. Second, it reduces the likelihood of income shocks,

hence increasing the plausibility of the quasilinearity of preferences. Third, it

reduces the computational burden. Indeed, since the number of parameters to
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solve for in the model is given by L · T + T , the nonlinear optimization problem

can become prohibitive if either L or T is too large.

As the methodology requires the data to be strictly positive, I drop house-

holds that do not meet this requirement for any aggregated good and month.

These conditions bring down the number of households from 62, 092 to 16, 025.

Further limiting the sample to single households that are at least 50 years old

decreases the number of households to 1668. Finally, I drop households that have

zero prices paid, thus decreasing the number of single households to 1645.43 Start-

ing from the sample of 16, 025 households and making the same operations bring

down the number of couples to 6364 and the number of multi-person households

with more than two members to 3539.

A5: Proofs

Proof of Theorem 1

Budget type A

The first-order conditions of the consumer problem (1) with respect to c and a

are

∇cui(ci,t,ai,t)l = λi,tFi,l(ai,l,t, zi,t)e
−ωi,l,t (4)

∇aui(ci,t,ai,t)l,k = λi,t
∂Fi,l(ai,l,t, zi,t)

∂aki,l,t
e−ωi,l,tci,l,t ∀l ∈ L,∀k ∈ Al, (5)

where∇ui(ci,t,ai,t) denotes the gradient of ui at the point (ci,t,ai,t) andAl denotes

43Zero prices may arise because of “free-good” promotions or if the household enters a price
equal to zero and no historical information regarding a valid price for the UPC is available.
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the set of variable inputs for good l ∈ L. Dividing (5) by (4) and rearranging yields

∂fi,l(ai,l,t, zi,t)

∂aki,l,t
=

∇aui(ci,t,ai,t)l,k
∇cui(ci,t,ai,t)l

· 1

ci,l,t
∀l ∈ L,∀k ∈ Al, (6)

where fi,l := log(Fi,l). Since the MRS is invariant to monotone transformations of

the utility function, the derivative of the log production function is invariant to

such transformations.

Budget type B

The first-order conditions of the consumer problem (1) with respect to c and a

are

∇cui(ci,t,ai,t)l = λi,t (7)

∇aui(ci,t,ai,t)l,k = −λi,t
∂Fi,l(ai,l,t, zi,t)

∂aki,l,t
e−ωi,l,t ∀l ∈ L,∀k ∈ Al, (8)

where ∇ui(ci,t,ai,t) denotes a gradient of ui at the point (ci,t,ai,t) and Al denotes

the set of variable inputs for good l ∈ L. Dividing (8) by (7) and rearranging

yields

∂Fi,l(ai,l,t, zi,t)

∂aki,l,t
= −∇aui(ci,t,ai,t)l,k

∇cui(ci,t,ai,t)l
· 1

e−ωi,l,t
∀l ∈ L,∀k ∈ Al. (9)

Dividing both sides by Fi,l(ai,l,t, zi,t), one obtains

∂fi,l(ai,l,t, zi,t)

∂aki,l,t
= −∇aui(ci,t,ai,t)l,k

∇cui(ci,t,ai,t)l
· 1

Fi,l,t

∀l ∈ L, ∀k ∈ Al, (10)

where Fi,l,t = Fi,l(ai,l,t, zi,t)e
−ωi,l,t is the observed output. Since the MRS is invari-

ant to monotone transformations of the utility function, the derivative of the log

production function is invariant to such transformations.
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Suppose the MRS is known, then equations (6) and (10) immediately identify the

derivative of the log production function from the data. Importantly, the left-hand

side defines a differential equation. Thus, by the fundamental theorem of calculus

and since a is a continuous variable, I can integrate the differential equation with

respect to akl to obtain

∫ aki,l,t

aki,l

∂fi,l(a
−k
i,l,t, a,zi,t)

∂a
da = fi,l(ai,l,t, zi,t) + Ci,l(a

−k
i,l,t, zi,t) ∀l ∈ L,∀k ∈ Al,

(11)

where 0 < aki,l < aki,l,t and a−k
i,l,t represents the vector al ∈ Al stripped of its kth

element. As Gandhi, Navarro and Rivers (2020) note, the above equations can be

combined to obtain the following equality:

fi,l(ai,l,t, zi,t) =

Al∑
k=1

(∫ aki,l,t

aki,l

∂fi,l
(
ak′<k
i,l,t ,ak′>k

i,l , a,zi,t

)
∂a

da

)
− Ci,l(zi,t). (12)

This equation shows that log production functions are identified up to an additive

function of z. Also, note that the constant in the constant of integration and the

intercept of the log production function are not separately identified. As such, one

can normalize one or the other. Suppose now that log production functions are

known up to an additive function of z, Ci,l(zi,t). It follows that partial derivatives

with respect to a are known as

∂Ci,l(zi,t)

∂aki,l,t
= 0.

Thus, equations (6) and (10) directly identify preference parameters as there are

|Al| · T → ∞ equations and the marginal rate of substitution is a function of a

finite number of preference parameters.
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Proof of Theorem 2

(i) =⇒ (ii)

Budget type A

The first-order conditions of the consumer problem for any good l ∈ L is given by

∇cui(ci,t,ai,t)l = λi,tFi,l(ai,l,t, zi,t)e
−ωi,l,t

∇aui(ci,t,ai,t)l,k = λi,t
∂Fi,l(ai,l,t, zi,t)

∂aki,l,t
e−ωi,l,tci,l,t ∀k ∈ Al,

where the equalities hold for some supergradient of ui(ci,t,ai,t).
44

Budget type B

The first-order conditions of the consumer problem for any good l ∈ L is given by

∇cui(ci,t,ai,t)l = λi,t (13)

∇aui(ci,t,ai,t)l,k = −λi,t
∂Fi,l(ai,l,t, zi,t)

∂aki,l,t
e−ωi,l,t ∀k ∈ Al, (14)

where the equalities hold for some supergradient of ui(ci,t,ai,t).

In what follows, I only include the derivation for budgets of type A; an anal-

ogous argument can be made for budgets of type B. The concavity of the utility

function implies that for all s, t ∈ T , we have

ui(ci,s,ai,s)−ui(ci,t,ai,t) ≤

[
∇cui(ci,t,ai,t)

′(ci,s − ci,t) +
∑
l∈L

∇aui(ci,t,ai,t)
′
l(ai,l,s − ai,l,t)

]
.

Combining the first-order conditions with the concavity of the utility function and

44Let m ∈ N, V ⊂ Rm be a convex set, and f : V → R be a concave function. A vector g ∈ V
is a supergradient of f at y ∈ V if for every x ∈ V it satisfies f(x) ≤ f(y) + g′(x− y).
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letting ui,t := ui(ci,t,ai,t) for all t ∈ T yields

ui,s − ui,t ≤ λi,t

[ (
Fi(ai,t, zi,t)⊙ e−ωi,t

)′
(ci,s − ci,t)

+
∑
l∈L

(
∇aFi(ai,t, zi,t)l ⊙ e−ωi,l,t ⊙ ci,l,t

)′
(ai,l,s − ai,l,t)

]
∀s, t ∈ T ,

where Fi(ai,t, zi,t) ⊙ e−ωi,t ≡ Fi,t is the observed output, e−ωi,l,t is e−ωi,l,t stacked

Al times, ci,l,t is ci,l,t stacked Al times, and Al is the dimension of al.

In what follows, (Ḟ k
i,l,t)l∈L,k∈Al,t∈T are latent variables that replace∇aFi(ai,t, zi,t)l,k

and I write the stacked vectors Ḟi,l,t⊙e−ωi,l,t⊙ci,l,t, l = 1, . . . , L, as Ḟi,t⊙e−ωi,t⊙ci,t

to simplify notation. The previous inequalities imply the existence of numbers

(ui,t)t∈T , positive (λi,t)t∈T , negative (Ḟ k
i,l,t)l∈L,k∈Al,t∈T , and (ωi,l,t)l∈L,t∈T such that

for all s, t ∈ T

ui,s − ui,t ≤ λi,t

[
F ′

i,t(ci,s − ci,t) +
(
Ḟi,t ⊙ e−ωi,t ⊙ ci,t

)′
(ai,s − ai,t)

]
. (15)

Next, using the convexity of the production function for each l ∈ L, we have

Fi,l(ai,l,s, zi,s)− Fi,l(ai,l,t, zi,t) ≥ ∇aFi,l(ai,l,t, zi,t)
′
l(ai,l,s − ai,l,t)

+∇zFi,l(ai,l,t, zi,t)
′(zi,s − zi,t) ∀s, t ∈ T .

These inequalities imply the existence of positive numbers (ϕi,l,t)l∈L,t∈T , negative

numbers (Ḟ k
i,l,t)l∈L,k∈Al,t∈T that are the same as those in equation (15), and negative

(F̈i,l,t)l∈L,t∈T such that for each l ∈ L

ϕi,l,s − ϕi,l,t ≥ Ḟ ′
i,l,t(ai,l,s − ai,l,t) + F̈ ′

i,l,t(zi,s − zi,t) ∀s, t ∈ T .
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Combining the restrictions from the concavity of the utility function and the con-

vexity of the production functions yields the inequalities of Theorem 2 (ii). Finally,

it must be the case that the numbers ϕi,l,t and ωi,l,t are such that ϕi,l,te
−ωi,l,t = Fi,l,t

since Fi,l,t = Fi,l(ai,l,t, zi,t)e
−ωi,l,t for all t ∈ T .

(ii) =⇒ (i)

Fix some t ∈ T and let t1 := t. Consider any sequence of finite indices τ = {tj}mj=1,

m ≥ 2, tj ∈ T . Let I be the set of all such indices and define

ui(c,a) = min
τ∈I

{
λi,tm

[
F ′

i,tm

(
c− ci,tm

)
+
(
Ḟi,tm ⊙ e−ωi,tm ⊙ ci,tm

)′(
a− ai,tm

)]
+

m−1∑
j=1

λi,tj

[
F ′

i,tj

(
cti,j+1

− ci,tj
)
+
(
Ḟi,tj ⊙ e−ωi,tj ⊙ ci,tj

)′ (
ati,j+1

− ai,tj

)]}
.

This function is the pointwise minimum of a collection of linear functions in (c,a).

As such, ui(c,a) is continuous and concave. Moreover, note that the utility func-

tion is increasing in c and decreasing in a.

If the budget sets (Bi,t)t∈T are convex, then the first-order conditions of the

model are necessary and sufficient for a maximum.45 Therefore, I have to show

that for all t ∈ T ,

λi,tFi,t ∈ ∇cui(ci,t,ai,t)

λi,tḞi,t ⊙ e−ωi,t ⊙ ci,t ∈ ∇aui(ci,t,ai,t),

or that these vectors are supergradients of the constructed utility function. Let

t ∈ T and note that by definition of ui(·, ·), there is some sequence of indices τ ∈ I
45I show that the convexity of the production functions implies the convexity of the budget sets.

The observed data can thus be thought of as optimal choices and, as I show later, rationalizability
obtains.
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such that

ui(ci,t,ai,t) ≥ λi,tm

[
F ′

i,tm

(
ci,t − ci,tm

)
+
(
Ḟi,tm ⊙ e−ωi,tm ⊙ ci,tm

)′ (
ai,t − ai,tm

)]
+

m−1∑
j=1

λi,tj

[
F ′

i,tj

(
cti,j+1

− ci,tj
)
+
(
Ḟi,tj ⊙ e−ωi,tj ⊙ ci,tj

)′ (
ai,tj+1

− ai,tj

)]
.

Add any bundle (c,a) to the sequence and use the definition of ui(·, ·) once again

to obtain

λi,t

[
F ′

i,t

(
c− ci,t

)
+
(
Ḟi,t ⊙ e−ωi,t

)′ (
a− ai,t

)]
+ λi,tm

[
F ′

i,tm

(
ci,t − ci,tm

)
+
(
Ḟi,tm ⊙ e−ωi,tm ⊙ ci,tm

)′ (
ai,t − ai,tm

)]
+

m−1∑
j=1

λi,tj

[
F ′

i,tj

(
ci,tj+1

− ci,tj
)
+
(
Ḟi,tj ⊙ e−ωi,tj ⊙ ci,tj

)′ (
ai,tj+1

− ai,tj

)]
≥ ui(c,a).

Hence,

ui(ci,t,ai,t) + λi,t

[
F ′

i,t(c− ci,t) +
(
Ḟi,t ⊙ e−ωi,t ⊙ ci,t

)′ (
a− ai,t

)]
≥ ui(c,a).

(16)

Since t ∈ T and (c,a) were arbitrary, the previous inequality corresponds to the

definition of concavity. Thus, the said vectors are indeed supergradients of ui.

I am left to show that the constructed utility function rationalizes the data.

For every l ∈ L, define the function

Fi,l(al, z) = max
t∈T

{
ϕi,l,t +

∑
k

(
Ḟ k
i,l,t(a

k
l − aki,l,t) + F̈ k

i,l,t(z
k − zki,t)

)}
.

This production function is the pointwise maximum of a collection of downward
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sloping linear functions in a and z. As such, Fi,l(al, z) is continuous, decreasing

in a and z, and convex, where the monotonicity property is a direct consequence

of Ḟ k
i,l,t < 0 and F̈ k

i,l,t < 0. Next, define the function

Mi,t(c,a) =
(
Fi(a, zi,t)⊙ e−ωi,t

)′
c− F ′

i,tci,t.

Since Fi(·, ·) and c are positive and convex functions, it follows that Mi,t(c,a) is

convex for all t ∈ T .46 The convexity of Mi,t(·, ·) implies that for any (c,a) and

(ci,t,ai,t)

Mi,t(c,a)−Mi,t(ci,t,ai,t) ≥ ∇cMi,t(ci,t,ai,t)(c− ci,t) +∇aMi,t(ci,t,ai,t)(a− ai,t),

where ∇cMi,t(ci,t,ai,t) and ∇aMi,t(ci,t,ai,t) denote subgradients of Mi,t(·, ·) at

(ci,t,ai,t). From the second set of inequalities in Theorem 2 (ii), we have

ϕi,l,t ≥ ϕi,l,s + Ḟ ′
i,l,s(ai,l,t − ai,l,s) + F̈ ′

i,l,s(zi,t − zi,s) ∀s ∈ T ,

which, combined with the definition of Fi,l(al, z), implies that Fi,l(ai,l,t, zi,t) = ϕi,l,t

for all t ∈ T .47 Using the restriction that ϕi,l,te
−ωi,l,t = Fi,l,t, it follows that

Mi,t(ci,t,ai,t) = 0 for all t ∈ T . As such, the inequalities for the convexity of the

function Mi,t(·, ·) simplify to

Mi,t(c,a) ≥ ∇cMi,t(ci,t,ai,t)(c− ci,t) +∇aMi,t(ci,t,ai,t)(a− ai,t).

46Note that the convexity of Mi,t(·, ·) implies the convexity of the budget sets. This is because
the budget sets Bi,t := {(c,a)|Mi,t(c,a) ≤ 0} are the lower contour sets of Mi,t(·, ·).

47It also follows that Ḟi,t and F̈i,t are subgradients of Fi,l(ai,l,t, zi,t).
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Consider (c,a) such that Mi,t(c,a) ≤ 0. Then, we have

0 ≥ Mi,t(c,a) ≥ ∇cMi,t(ci,t,ai,t)(c− ci,t) +∇aMi,t(ci,t,ai,t)(a− ai,t). (17)

Furthermore, from the definition of Mi,t(ci,t,ai,t), we have

∇cMi,t(ci,t,ai,t) = Fi,t

∇aMi,t(ci,t,ai,t) = Ḟi,t ⊙ e−ωi,t ⊙ ci,t.

Plugging those into equation (17), one obtains that

0 ≥ F ′
i,t(ci,t,ai,t)(c− ci,t) +

(
Ḟi,t ⊙ e−ωi,t ⊙ ci,t

)′
(a− ai,t). (18)

Using this last inequality in equation (16), one concludes that ui(ci,t,ai,t) ≥

ui(c,a). In other words, the data are rationalized.

Proof of Proposition 1

Assumption 4 states that the price function for any good l ∈ L is given by:

log
(
p∗l,t
)
= α0

l + α1
l log(al,t)− ωl,t.

Due to measurement error in prices, we only get to make inference from

log(pl,t) = α0
l + α1

l log(al,t)− ωl,t.
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Summing this equation across goods and dividing by L yields

log(pl,t) =
1

L

L∑
l=1

[
α0
l + α1

l log(al,t)
]
− ωl,t,

where log(pl,t) denotes the average log price paid and ωl,t denotes the average

search productivity. Further taking the expectation simplifies the equation to

E
[
log(pl,t)

]
=

1

L

L∑
l=1

(
E
[
α0
l

]
+ E

[
α1
l log(al,t)

])
,

where Assumption 5 was used to eliminate the expected average search produc-

tivity. By Assumption 6, the above can be written as

E
[
log
(
p∗l,t
)]

=
1

L

L∑
l=1

(
E
[
α0
l

]
+ E

[
α1
l log(al,t)

])
.

Taking the derivative with respect to log(al,t), one gets

∂E
[
log
(
p∗l,t
)]

∂ log(al,l)
=

1

L

L∑
l=1

∂ (E [α0
l ] + E [α1

l log(al,t)])

∂ log(al,t)
.

By Leibniz integration rule, one can insert the derivative inside the expectation

to get

E

[
∂ log

(
p∗l,t
)

∂ log(al,t)

]
=

1

L
E
[
α1
l

]
.48

Finally, summing this equation for each good l ∈ L and dividing by L gives

E

[
∂ log

(
p∗l,t
)

∂ log(al,t)

]
=

1

L
E
[
α1
]
,

where the left-hand side is the (average) expected elasticity of price with respect

48This requires the partial derivatives to be continuous.

57



to shopping intensity and α1 := 1
L

∑L
l=1 α

1
l is the average shopping technology.

Remark. Measurement error implicitly accommodates various shocks that may

occur outside the model. For example, it could capture changes in prices that arise

due to fluctuations in transportation costs, or changes in prices that arise due to

fluctuations in crop yields. Likewise, exogenous shocks may be absorbed by search

productivity. For example, it could capture random fluctuations in the consumer

degree of attention to prices. Accordingly, the model is robust to a variety of per-

turbations.

A6: Price Search Rationalizability

The environment defined in Section 5.2 implies that for all l ∈ L and s, t ∈ T , the

model is characterized by the following moment functions:

gui,s,t(xi, ei) := 1
(
ui,s − ui,t −

[
p∗′
i,t(ci,s − ci,t)− (ṗi,t ⊙ ci,t)

′ (ai,s − ai,t)
]
≤ 0
)
− 1,

gpi,l,t(xi, ei) := 1
(
log
(
p∗i,l,t

)
−
(
α0
i,l + α1

i,l log(ai,l,t)− ωi,l,t

)
= 0
)
− 1,

gmi,l,t(xi, ei) := log(pi,l,t)− log
(
p∗i,l,t

)
,

gωi,t(xi, ei) := ωi,t,

where the first set of functions characterizes the concavity of the utility func-

tion, the second the log-linearity of the price functions, the third measurement

error, and the last search productivity. The latent variables satisfy their support

constraints: α1
i ∈ [−1, 0], ṗi,t < 0 and p∗

i,t > 0, where ṗi,l,t further satisfies

ṗi,l,t = α0
i,lα

1
i,la

α1
i,l−1

i,l,t e−ωi,l,t ∀l ∈ L.

This equality constraint implies that ṗi,t is completely determined by the data
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and latent variables (ui,t,αi,ωi,t,mi,t)t∈T . Every consumer has a total of T 2 +L ·

T + L · T + T moment functions, written as gi(xi, ei) := (gu
i (xi, ei)

′, gp
i (xi, ei)

′,

gm
i (xi, ei)

′, gω
i (xi, ei)

′)′ for short. Arbitrary combinations of these sets of functions

are denoted with their superscripts bundled together. For example, gm,ω
i (xi, ei) is

the set of functions on measurement error and search productivity.

The moment functions allow me to define the statistical rationalizability of a

data set with respect to the model of price search.

Definition 4. Under Assumptions 4-7, a data set x := {xi}i∈N is price search

rationalizable (PS-rationalizable) if

inf
µ∈ME|X

∥Eµ×π0 [g(x, e)]∥ = 0,

where π0 ∈ MX is the observed distribution of x.

This definition is exactly the same as that of statistical rationalizability with the

moment functions specialized to the model of price search.

Lower Bound on Search Costs

Note that the first-order conditions of the consumer problem (2) give rise to the

following relationship:

∂ui(ci,t,ai,t)

∂ai,l,t
=

∂pi,l(ai,l,t, ωi,l,t)

∂ai,l,t
ci,l,t ∀l ∈ L.

This equation states that the disutility from price search is equal to the savings

from price search at the optimum. Importantly, it allows one to obtain a simple

lower bound on the search cost of any good l ∈ L. Let ai,−l,t denote ai,t stripped
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of its lth element, then

∫ 0

ai,l,t

∂ui(ci,t,ai,−l,t, a)

∂a
da =

∫ 0

ai,l,t

∂pi,l(a, ωi,l,t)

∂a
ci,l,t da ≥ −∂pi,l(ai,l,t, ωi,l,t)

∂ai,l,t
ai,l,tci,l,t,

where the inequality is obtained from the fact that the derivative of the price

function at ai,l,t is smaller (in absolute) than at any a < ai,l,t. From Theorem 2,

we know that price search rationalizability is equivalent to the rationalizability of

each individual data set by a well-behaved utility function and the moment con-

ditions on search productivity. As such, the expected search cost is well-defined.

Relationship Between Rationalizability and GARP

A bundle (ci,t,ai,t) is said to be directly revealed preferred to a bundle (ci,s,ai,s)

if Mi,t(ci,s,ai,s) ≤ 0. Let RD denote the direct revealed preference relation and let

R denote its transitive closure.49 When the inequality is strict, (ci,t,ai,t) is said to

be directly revealed strictly preferred to (ci,s,ai,s) and is denoted PD. In the case

where there is a sequence (ci,t,ai,t)R
D(ci,t1 ,ai,t1), (ci,t1 ,ai,t1)R

D(ci,t2 ,ai,t2), . . . ,

(ci,tm ,ai,tm)R
D(ci,s,ai,s) of directly revealed preferences, where t, t1, . . . , tm, s ∈ T ,

(ci,t,ai,t) is said to be revealed preferred to (ci,s,ai,s). Denote the direct revealed

preference relation by RD and the indirect revealed preference relation by R.

Definition 5. (GARP) If (ci,t,ai,t) is revealed preferred to (c,a), then (c,a) is

not strictly directly revealed preferred to (ci,t,ai,t).

The following result shows that GARP is not sufficient to obtain a concave utility

function nor a convex production function. Thus, rationalizability as stated in

Theorem 2 implies GARP but is not implied by it.

49The transitive closure R of a relation RD is the smallest relation containing RD satisfying
transitivity.

60



Proposition 2. The following are equivalent:

(i) The data set xi is rationalized by a utility function that is continuous, in-

creasing in c, and decreasing in a.

(ii) The data set xi satisfies GARP.

Proof of Proposition 2

Definition 6. A square matrix Mi of dimension T is cyclically consistent if

for every chain {t1, t2, . . . , tm} ⊂ {1, 2, . . . , T}, Mi,t1,t2 ≤ 0, Mi,t2,t3 ≤ 0, . . . ,

Mi,tm−1,tm ≤ 0 implies Mi,tm,t1 > 0, where Mi,ti,tj represents the element in row ti

and column tj of Mi.

Lemma 1. GARP holds if and only if the matrix of revealed preferences Mi is

cyclically consistent.

For the sake of a contradiction, suppose GARP is violated. Thus, there is a se-

quence of indices {t1, t2, . . . , tm} such that (ci,t1 ,ai,t1)R(ci,tm ,ai,tm) and (ci,tm ,ai,tm)R
D(ci,t1 ,ai,t1).

By definition, this implies thatMi,t1(ct2 ,at2) ≤ 0,Mi,t2(ct3 ,at3) ≤ 0, . . . ,Mi,tm(ct1 ,at1)

< 0. Construct the matrix of revealed preferences Mi and note that the chain

{t1, t2, . . . , tm} violates cyclical consistency. Likewise, if cyclical consistency is vi-

olated, then by extracting a chain causing a violation one obtains a violation of

GARP as each element of the matrix represents a revealed preference.

Lemma 2. If a square matrix Mi of dimension T is cyclically consistent, then

there exist numbers ui,t, λi,t > 0, t = 1, . . . T , such that for all s, t ∈ T

ui,s − ui,t ≤ λi,tMi,t(ci,s,ai,s).
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The proof is a complete analogue of Section 2 and 3 in Fostel, Scarf and Todd

(2004).

I am now ready to prove Proposition 2.

(i) =⇒ (ii)

For the sake of a contradiction, suppose that GARP is violated in the data. Thus,

there exists t1, t2, . . . , tm ∈ T such that Mi,t1(ci,t2 ,ai,t2) ≤ 0, Mi,t2(ci,t3 ,ai,t3) ≤ 0,

. . . , Mi,tm(ci,t1 ,ai,t1) < 0. If there exists a utility function that rationalizes

the data, then this function must be such that ui(ci,t1 ,ai,t1) ≥ ui(ci,t2 ,ai,t2),

ui(ci,t2 ,ai,t2) ≥ ui(ci,t3 ,ai,t3), . . . , ui(ci,tm ,ai,tm) > ui(ci,t1 ,ai,t1). However, this

sequence of inequalities is self-contradictory.

(ii) =⇒ (i)

Let Mi be a square matrix of dimension T whose element in row s and column t

is Mi,s,t := Mi,t(ci,s,ai,s). By Lemma 1, GARP holds if and only if the matrix of

revealed preferences Mi is cyclically consistent. An application of Lemma 2 thus

implies the existence of numbers ui,t, λi,t > 0, t = 1, . . . T , such that

ui,s ≤ ui,t + λi,tMi,t(ci,s,ai,s) ∀s, t ∈ T . (19)

Let ui(c,a) = min
t∈T

{ui + λi,tMi,t(c,a)} and note that the utility function is

locally nonsatiated, continuous, increasing in c, and decreasing in a. For bud-

gets of type A, the latter is a consequence of the assumption that the production

function is decreasing in a. For budgets of type B, it is a consequence of the as-

sumption that the production function is increasing in a and the distinct definition

of Mi,t(c,a), i.e. Mi,t(c,a) = (c− F (a, zi,t)e
−ωi,t)− (ci,t − F (ai,t, zi,t)e

−ωi,t).
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To show that the utility function rationalizes the data, first note that for all

s ∈ T , ui(ci,s,ai,s) = min
t∈T

{ui,t + λi,tMi,t(ci,s,ai,s)} = ui,s. This can be seen from

the inequalities in (19) and by noting that Mi,t(ci,t,ai,t) = 0 for all t ∈ T . Hence,

for any (c,a) such that Mi,t(c,a) ≤ 0 we have ui(c,a) ≤ ui,t + λi,tMi,t(c,a) ≤

ui,t = ui(ci,t,ai,t).
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