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Abstract

This paper provides a revealed preference characterization of a collective

labor supply model with household production where adult members have

preferences that depend on their own leisure, expenditures, and children

welfare. We show that the nonparametric revealed preference restrictions

allow to partially identify the impacts of parental inputs on children wel-

fare. We propose a novel estimation strategy that exploits these restrictions

and allows for production heterogeneity. In our application, we apply our

methodology to Dutch data on couples with children. We find extensive

heterogeneity in the production technology, decreasing returns to scale in

the production of children welfare, and a positive impact of education on

the effects of parental inputs on children welfare.

JEL Classification: D11, D12, D13, C51, C63.

1 Introduction

It is widely recognized that the unitary model, which assumes that household

members preferences can be represented by a single household utility function, is

inappropriate for analyzing household data (see e.g., Fortin and Lacroix (1997)

and Browning and Chiappori (1998)). In an effort to provide a proper founda-

tion to analyze household behavior, Chiappori (1988, 1992) suggested a collective
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model in which household members have distinct preferences and whose alloca-

tions are the result of a Pareto efficient bargaining process. This framework has

proven to be empirically successful at rationalizing household decision-making

(e.g., Cherchye and Vermeulen, 2008) and understanding power dynamics within

the household (e.g., Cherchye, De Rock and Vermeulen, 2011).

Once the household is recognized as a collection of individuals, it opens

up the possibility that the impact of a policy depends on which individual is

targeted within the household. Indeed, the distribution of resources within the

household has been shown to have significant impacts on children welfare as

early as Thomas (1990). Motivated by this “targeted” view, Blundell, Chiappori

and Meghir (2005) extended the collective framework to caring parents whereby

children welfare is treated as a public good in parents utility functions and

produced via parental time investment and children expenditure.1

The first application of Blundell, Chiappori and Meghir (2005)’s ideas was

undertaken by Cherchye, De Rock and Vermeulen (2012) using a unique panel

data set containing information on time use and expenditure. Despite their

innovative approach, they only identify the model using differential arguments

that rely on a fully parametric model, preference homogeneity, and constant

returns to scale.2 We argue that those assumptions are unavoidable when only

using the cross-sectional implications of the model. However, we show that in

panel data the model has additional implications that can be used to learn about

the production of children welfare.

Our first contribution is to derive a revealed preference characterization of a

collective labor supply model with children as proposed by Blundell, Chiappori

and Meghir (2005) and Cherchye, De Rock and Vermeulen (2012).3 The char-

acterization builds on the original work of Cherchye, De Rock and Vermeulen

(2007, 2011), but further incorporates household production.4 Interestingly, the

collective model implies optimizing behavior with respect to the production of

children welfare. We show that these restrictions, along with standard revealed

preference conditions, are essential to learn about the production function in the

absence of auxiliary assumptions.

1This modelling choice is consistent with Becker (1965)’s view of households as producing
units.

2A study of identification in multi-member collective models by Chiappori and Ekeland
(2009) also suggests that constant returns to scale is necessary in such model.

3See also Dunbar, Lewbel and Pendakur (2013) for a collective model with children that
does not require the share of resources allocated to children to be known.

4See Apps and Rees (1997) and Chiappori (1997) for earlier work that incorporate household
production in the collective model.
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Our second contribution is to propose a novel estimation strategy to analyze

the collective model with unrestricted preference and production heterogeneity.

To this end, we use the framework developed by Aguiar and Kashaev (2021)

which provides a tractable approach to make statistical testing and inference in

partially identified models defined by shape constraints.5 The main challenge

faced in applying their framework is that collective models tend to be highly

nonlinear. This poses a nontrivial computational problem as existing implemen-

tations only work well for models defined by linear constraints.6

We solve this practical limitation by proposing a blocked Gibbs sampler that

allows direct sampling from the feasible space even when the latter does not

define a polytope.7 We observe that our methodology may prove useful for a

broad range of collective models such as noncooperative models (e.g., Cherchye,

Demuynck and De Rock, 2011, d’Aspremont and Dos Santos Ferreira, 2019,

Cherchye et al., 2020), among others. As such, we believe our algorithm may be

of independent interest.

Our third contribution is to learn about heterogeneity in the production of

children welfare. Using the LISS (Longitudinal Internet Studies for the Social

sciences) panel data from Cherchye, De Rock and Vermeulen (2012), we first

use our novel (partial) identification strategy to learn about returns to scale.

We find that households face decreasing returns to scale. Then, we recover the

expected impacts of parents inputs on children welfare without relying on the

constant returns to scale assumption. Finally, we show that education increases

the amount of children welfare produced by an hour of time invested by parents.

The paper is organized as follows. Section 2 describes our collective model

and characterizes its implications. Section 3 analyzes the empirical content of

the model. Section 4 presents the empirical specification. Section 5 presents

the estimation strategy. Section 6 presents the data set used in the application.

Section 7 presents the empirical results. Section 8 concludes. The Appendix

contains proofs that are not in the main text and our Gibbs sampler.

5Their framework builds on the Entropic Latent Variable Integration via Simulation (ELVIS)
methodology developed by Schennach (2014). Intuitively, ELVIS can be viewed as a general-
ization of the method of simulated moments (McFadden, 1989; Pakes and Pollard, 1989).

6For example, Aguiar and Kashaev (2021) consider the collective exponential discounting
model of Adams et al. (2014) but only test necessary conditions to simplify the implementation.
Gauthier (2023) considers a model of price search, but assumes a quasilinear specification in
the application that alleviates the computational burden.

7Direct sampling generally uses a Hit-and-Run algorithm that requires the feasible space
to define a (convex) polytope. See Aguiar and Kashaev (2021) for an application to models
defined by shape constraints and Demuynck (2021) for an application to models defined by the
Generalized Axiom of Revealed Preference (GARP) as introduced by Varian (1982).
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2 Household Model

This section presents the environment considered in the paper, the collective

model, and its empirical implications.

2.1 Environment

We consider households with two adults (i = 1, 2) and children. We assume

that parents care about their children and incorporate this feature in the model

by treating children welfare as a public good. The preferences of each adult

household member are represented by a utility function U i that is continuous,

increasing, and concave.

At every observation t ∈ T = {1, 2, . . . T}, adult household members spend

their time on leisure lit, market work bit, and childcare hit such that the following

normalized time constraint is satisfied:

lit + bit + hit = 1.

Parents use time spent on childcare and children expenditure (ct) to produce

children welfare. The relationship between parents inputs and children welfare

is formalized through the production function

Wt ≡ W (h1t , h
2
t , ct, ϵt),

where ϵt ∈ R represents a productivity shock. Each household member receives

a wage wi
t per unit of market work. As such, the budget constraint is given by

qt +Qt + ct = yt + w1
t b

1
t + w2

t b
2
t ,

where qt ∈ R+ represents expenditure on private goods, Qt ∈ R+ represents

expenditure on public goods, and yt > 0 represents nonlabor income.

Since private expenditure cannot be used simultaneously by both household

members, it has to be split in some way between them.

Definition 1. Let D be a data set. For every observation t ∈ T , we say

that qit ∈ R+, i ∈ {1, 2}, represent personalized private expenditures of each

household member if
∑2

i=1 q
i
t = qt.

Household members get utility from their share of private expenditure such that

their preferences depend on leisure, private expenditure, public expenditure, and
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children welfare. In what follows, we assume that private expenditure of each

household member is observed to match the data available in the application.

However, our results can be generalized to the case where only total private

expenditure is observed.

Let U be the set of continuous, increasing, and concave utility functions and

W be the set of continuous, increasing, and concave in (h1t , h
2
t , ct) production

functions. A household j ∈ J is an i.i.d. draw (U1
j , U

2
j ,Wj) from W and a

data set Dj := {(qijt, Qjt, cjt, b
i
jt, h

i
jt, w

i
jt)

2
i=1}t∈T is an i.i.d. draw from some

distribution. To avoid overcrowding, we do not explicitly write the household

subscript j on variables unless it is relevant. The next subsection formalizes the

relationship between the data and the abstract notion of household through the

lenses of a model.

2.2 Collective Model

We follow Chiappori (1988, 1992) and assume that household members choose

an intrahousehold allocation that is Pareto efficient. This choice is motivated

by the observation that Pareto efficiency is a minimal condition for optimal

resource allocation (and hence, rationality) in a group setting. Hence, for every

observation t ∈ T , the household picks an intrahousehold allocation that solves

max
(l1,l2,h1,h2,q1,q2,Q,c)∈R2

+×R2
++×R2

+×R+×R++

µ1
tU

1(l1, q1, Q,Wt) + µ2
tU

2(l2, q2, Q,Wt),

(1)

subject to satisfying the constraints

(q1 + q2) +Q+ c = yt + w1
t b

1 + w2
t b

2

li + bi + hi = 1 (i = 1, 2),

where µi
t > 0 denote the bargaining power of household member i. Note that

the model makes no assumption on the underlying process by which the Pareto

efficient allocation is achieved. That is, the weights µi
t result from some black

box bargaining process that takes place within the household.8

We propose a natural notion of collective rationalizability based on the house-

hold maximization problem.

8Although Nash equilibria are not always Pareto efficient, the black box bargaining process
could be a (Pareto efficient) Nash equilibrium. Indeed, since married couples effectively play a
repeated game, an appeal to folk theorems provide some intuitive motivation for the idea that
the Pareto efficient allocation is a (cooperative) Nash equilibrium.
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Definition 2. Let D be a data set. The model (1) rationalizes the data if

there exist concave utility functions U i and a production function W concave in

(h1, h2, c) such that the first-order conditions of the problem are satisfied.

This definition states that the model rationalizes the data if there are latent

model parameters that satisfy the first-order conditions. Since household mem-

bers utility functions are concave and the budget set is linear, the first-order

conditions exhaust the empirical content of the model.

2.3 Characterization

This section derives restrictions on the data implied by the model. First, we

define a few notions that will be useful for the characterization of the model.

Definition 3. Let D be a data set. For every observation t ∈ T , we say that

P i
t ∈ R++, i ∈ {1, 2}, represent personalized (or Lindahl) prices for public

expenditure of each household member if
∑2

i=1 P i
t = 1.

Definition 4. Let D be a data set. For every observation t ∈ T , we say that

P i
t ∈ R++, i ∈ {1, 2}, represent personalized (or Lindahl) prices for children

welfare of each household member if
∑2

i=1 P
i
t = Pt.

It is worth noting that the personalized prices (P i
t , P

i
t ) are not observed by

the econometrician. Furthermore, while the price of public expenditure (Pt) can

safely be set to 1, the price of children welfare (Pt) is unobservable as children

welfare is a nonmarket good.

We now introduce some revealed preference terminology. Let ais,t := wi
t(l

i
s −

lit) + (qis − qit) + P i
t(Qs − Qt) + P i

t (Ws − Wt) and xit := (lit, q
i
t, Qt,Wt). We say

that xit is (strictly) directly revealed preferred to xis if ais,t (<) ≤ 0. We say that

xit is revealed preferred to xis if there exists a sequence t1, t2, . . . , tm such that

ait1,t ≤ 0, ait2,t1 ≤ 0, . . . , aitm−1,tm , a
i
tm,s ≤ 0. Likewise, we say that xit is strictly

revealed preferred to xis if one of the inequalities in the sequence is strict.

Definition 5. A household member i ∈ {1, 2} satisfies the Generalized Axiom of

Revealed Preference (GARP) if there exist personalized prices for public expen-

diture P i
t , personalized prices for children welfare P i

t , and children welfare Wt

such that if xit is revealed preferred to xis then xis is not strictly directly revealed

preferred to xit.

The notion of revealed preference relates the ordinal value of allocations that

enter preferences of each household member to their expenditure levels. In our
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setup, the presence of a public good (Q) implies that the expenditure of an

allocation depends on unknown personalized prices. Further, in the case of the

public nonmarket good (W ) neither the price or the quantity is known. Finally,

it is worth observing that childcare and children expenditure do not enter the

definition of revealed preference as the preferences of a household member only

depends on those through their impact on children welfare. The following result

provides equivalent characterizations of the model.

Theorem 1. Let D be a given data set. The following conditions are equivalent:

(i) The household model (1) rationalizes the data.

(ii) There exist personalized prices for public expenditure P i
t > 0 such that

P1
t +P2

t = 1, personalized prices for children welfare P i
t > 0, and numbers

U i, λi
t, Wt, Ẇh1

t
, Ẇh2

t
, Ẇct > 0 such that for all s, t ∈ T and each adult

member i ∈ {1, 2}

U i
s − U i

t ≤ λi
t

[
wi
t(l

i
s − lit) + (qis − qit) + P i

t(Qs −Qt) + P i
t (Ws −Wt)

]
,

PtẆh1
t
= w1

t , PtẆh2
t
= w2

t , PtẆct = 1.

(iii) There exist personalized prices for public expenditure P i
t > 0 such that

P1
t + P2

t = 1, personalized prices for children welfare P i
t , children welfare

Wt > 0, and numbers Ẇh1
t
, Ẇh2

t
, Ẇct > 0 such that GARP holds for each

adult member i ∈ {1, 2} and

PtẆh1
t
= w1

t , PtẆh2
t
= w2

t , PtẆct = 1.

Theorem 1 shows that the Afriat inequalities are equivalent to GARP and that

those conditions must be satisfied for both household members. The latter im-

plies that the household problem has an equivalent characterization in terms of a

two-step procedure (Chiappori, 1988, 1992). That is, the solution of the house-

hold maximization problem can be viewed as the outcome of separate utility

maximization problems for each adult in the household conditional on a distri-

bution of nonlabor income.

It is interesting to note that neither the Afriat inequalities or GARP exhaust

the empirical implications of the model. Indeed, the model further implies that

the household is a profit maximizer. To see why, observe that the equality

constraints in Theorem 1 (ii)-(iii) can be viewed as first-order conditions from
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the profit maximization problem

max
h1
t ,h

2
t ,ct

PtWt − w1
t h

1
t − w2

t h
2
t − ct,

where Ẇx stands for the derivative of children welfare with respect to input x.

As such, household members increase each input in the production of children

welfare up until the point where marginal revenue equates marginal cost. Note

that this profit maximization behavior is not assumed but implied by the model.

3 Empirical Content

This section shows that the collective model informatively partially identifies the

production function. Intuitively, if the production function exhibited constant

returns to scale, the household would make zero profit as a firm and revenue

PtWt would equate costs w1
t h

1
t + w2

t h
2
t + ct. In this special case, revenue would

be identified and the first-order conditions would recover the production function

from its partial derivatives. We show that the household revenue from producing

children welfare is inversely proportional to its costs when the production func-

tion is homogeneous, where the factor of proportionality is given by its return

to scale. We then leverage the panel structure of the data to bound returns to

scale from restrictions on household members preferences.

We consider a production function subject to Hicks-neutral productivity

shocks.

Assumption 1. The productivity shocks are Hicks-neutral such that children

welfare is given by

Wt = F (h1t , h
2
t , ct)e

ϵt .

This assumption is necessary to disentangle the impacts of productivity shocks

and parental inputs on the production of children welfare. Next, we impose a

mild support condition that ensures sufficient variation in inputs.

Assumption 2. The panel distribution of wages and income (w1
t , w

2
t , yt)t∈T is

absolutely continuous.

Assumption 2 is a mild regularity condition that ensures time series variation

in wages and income. It rules out mass points that may arise if wages and

income were constant in time, for example. In the latter case, the model would

not generate variation in inputs and it would thus be impossible to identify
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the production function. Note that we do not rely on cross-sectional variation

for identification as we allow for unrestricted heterogeneity in the production

technology.

Our first result shows that, if children welfare expenditure were known, the

production function would be identified.

Proposition 1. Suppose Assumptions 1-2 hold and PtWt is known, then the

production function is nonparameterically identified up to scale.

Proof. The first-order conditions with respect to inputs imply that the household

equates the marginal product of factors of production to their marginal cost such

that

∂F (h1t , h
2
t , ct)

∂h1t
eϵt =

w1
t

Pt

∂F (h1t , h
2
t , ct)

∂h2t
eϵt =

w2
t

Pt

∂F (h1t , h
2
t , ct)

∂c2t
eϵt =

1

Pt
.

Divide the marginal products by Wt to obtain

∂f(h1t , h
2
t , ct)

∂h1t
=

w1
t

PtWt

∂f(h1t , h
2
t , ct)

∂h2t
=

w2
t

PtWt

∂f(h1t , h
2
t , ct)

∂c2t
=

1

PtWt
,

where f(·) denote the log production function. Since PtWt is known, the marginal

products are identified. Next, variation in inputs allows us to integrate each

marginal product, giving the following system of partial differential equations∫ h1
t

h1
0

∂f(h1t , h
2
t , ct)

∂h1t
dh1t = f(h1t , h

2
t , ct) + C(h2t , ct)∫ h2

t

h2
0

∂f(h1t , h
2
t , ct)

∂h2t
dh2t = f(h1t , h

2
t , ct) + C(h1t , ct)∫ ct

c0

∂f(h1t , h
2
t , ct)

∂ct
dct = f(h1t , h

2
t , ct) + C(h1t , h

2
t ).

These equations can be used to recover the log production function up to a
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constant:

f(h1t , h
2
t , ct) =

∫ h1
t

h1
0

∂f(h1, h20, c0)

∂h1t
dh1 +

∫ h2
t

h2
0

∂f(h1t , h
2, c0)

∂h2t
dh2+

+

∫ ct

c0

∂f(h1t , h
2
t , c)

∂ct
dc− C,

where C is a constant of integration. One recovers the production function up

to scale after taking the exponential function.

Proposition 1 states that, in principle, the model imposes enough structure to

nonparameterically identify the production function provided the unobservable

quantity PtWt is known. Interestingly, note that identification does not require

knowledge of children welfare per se. Intuitively, any scaling of children welfare

is offset by a rescaling of children welfare prices, thus leaving revenue PtWt

unchanged.9 This is reflected in Proposition 1 through the statement that the

production function is identified up to scale.

The previous discussion makes clear that the identification problem amounts

to obtaining restrictions on PtWt. This condition is still problematic as PtWt is

also unobservable. We argue that the class of nonparametric concave production

functions is too flexible when the output is unobservable. Hence, we focus on

the class of homogeneous production functions.

Assumption 3. The production function is homogeneous of degree RTS ∈ (0, 1].

The importance of the homogeneity assumption is displayed in the following

result.

Lemma 1. Suppose Assumptions 1-3 hold, then RTS ·PtWt = w1
t h

1
t +w2

t h
2
t + ct

for all t ∈ T .

Proof. From the first-order conditions of the model and the Hicks-neutrality of

productivity shocks, we have

∂F (h1t , h
2
t , ct)

∂h1t
eϵt =

w1
t

Pt

∂F (h1t , h
2
t , ct)

∂h2t
eϵt =

w2
t

Pt

∂F (h1t , h
2
t , ct)

∂c2t
eϵt =

1

Pt
.

9This mechanism has a natural economic interpretation. Namely, it captures the idea of
scarcity whereby the value of a good decreases with its abundance.
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We can multiply each marginal product by its own factor of production to get

∂F (h1t , h
2
t , ct)

∂h1t
h1t e

ϵt =
w1
t h

1
t

Pt

∂F (h1t , h
2
t , ct)

∂h2t
h2t e

ϵt =
w2
t h

2
t

Pt

∂F (h1t , h
2
t , ct)

∂c2t
cte

ϵt =
ct
Pt

.

Summing up these equations and multiplying by Pt, we obtain

Pt

[
∂F (h1t , h

2
t , ct)

∂h1t
h1t +

∂F (h1t , h
2
t , ct)

∂h2t
h2t +

∂F (h1t , h
2
t , ct)

∂c2t
ct

]
eϵt = Et,

where Et := w1
t h

1
t +w2

t h
2
t + ct. Since the production function is homogeneous of

degree RTS ∈ (0, 1], an application of Euler’s theorem gives

RTSPtWt = Et,

where we used the production function equation Wt = F (h1t , h
2
t , ct)e

ϵt .

Lemma 1 implies that the identification problem can be stated in terms of

restrictions on returns to scale RTS rather than restrictions on PtWt directly.

Indeed, if the scalar RTS was known, we would immediately identify PtWt via

the equation PtWt = RTS−1Et. The reason this reformulation of the identifi-

cation problem is useful is that PtWt is a quantity that varies in time, whereas

RTS is time invariant. It is precisely this simplification that allows us to bound

PtWt by exploiting the panel structure of the data. In what follows, we say that

a lower bound on RTS is informative if it is greater than 0 and that an upper

bound on RTS is informative if it is lower than 1.

Proposition 2. Suppose Assumptions 1-3 hold. A data set can have informative

lower bounds and informative upper bounds on RTS, though at possibly different

values of personalized prices for public expenditure P i
t and personalized prices

for children welfare P i
t .

Proof. Let Xi
tj ,tk

:= wi
tk
(litj − litk) + (qitj − qitk) + P i

tk
(Qtj − Qtk) and recall that
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aitj ,tk = Xi
tj ,tk

+ P i
tk
(Wtj −Wtk). There are three possibilities when aitj ,tk ≥ 0:

Case 1: Xi
tj ,tk

> 0 and P i
tk
(Wtj −Wtk) ≥ 0

Case 2: Xi
tj ,tk

> 0 and P i
tk
(Wtj −Wtk) ≤ 0

Case 3: Xi
tj ,tk

< 0 and P i
tk
(Wtj −Wtk) ≥ 0.

Likewise, there are also three possibilities when aitj ,tk ≤ 0:

Case 1: Xi
tj ,tk

< 0 and P i
tk
(Wtj −Wtk) ≤ 0

Case 2: Xi
tj ,tk

< 0 and P i
tk
(Wtj −Wtk) ≥ 0

Case 3: Xi
tj ,tk

> 0 and P i
tk
(Wtj −Wtk) ≤ 0.

By Lemma 1, we have

Wtk =
Etk

RTSPtk

∀k.

Substituting this expression in aitj ,tk , one obtain bounds on RTS of the form:

RTS ≶ −

(
P i
tk

Ptj
Etj −

P i
tk

Ptk
Etk

)
Xi

tj ,tk

.

It is easy to see that Case 1 yields a negative and therefore uninformative lower

bound on RTS regardless of the sign of aitj ,tk . Likewise, it is easy to see that

Case 2 yields informative lower bounds on RTS regardless of the sign of aitj ,tk .

Indeed, the bound is either in the interval (0, 1] or the interval (1,∞). In the

former case, the bound improves upon 0 and, in the latter case, the data would

refute the model. Finally, it is easy to see that Case 3 yields an upper bound on

RTS such that

RTS < −

(
P i
tk

Ptj
Etj −

P i
tk

Ptk
Etk

)
Xi

tj ,tk

.

Let us first consider the case where aitj ,tk ≥ 0. The upper bound is less than 1 if

P i
tk
(Wtj −Wtk) < −Xi

tj ,tk
or(
P i
tk

Ptj

Etj −
P i
tk

Ptk

Etk

)
< −Xi

tj ,tk
.

Since P 1
tk
+ P 2

tk
= Ptk for all k, it follows that

P i
tk

Ptk
∈ (0, 1). If

P 1
tk

Ptk
goes to zero,
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then
P 2
tk

Ptk
goes to one. For household member 1, we thus get the restriction

P 1
tk

Ptj

Etj < −X1
tj ,tk

.

Clearly, this condition is satisfied if
P 1
tk

Ptj
goes to zero. However, without an upper

bound on
Ptk
Ptj

(and thus, P 1
tk
/Ptj ) we cannot guarantee that the inequality holds

for all personalized prices. For household member 2, we get the restriction

P 2
tk

Ptj

Etj − Etk < −X2
tj ,tk

.

Once again, it is clear that
Ptk
Ptj

(and thus, P 2
tk
/Ptj ) should be bounded if the

inequality is to hold for all personalized prices. Indeed, in that case one can pick

Etj and Etk to be similar and X2
tj ,tk

< 0 large enough such that the inequality

holds for every latent children welfare prices satisfying the support constraint.

In short, we can guarantee informative upper bounds on RTS when aitj ,tk ≥ 0

if
Ptk
Ptj

is bounded. Let us now consider the case where aitj ,tk ≤ 0. The upper

bound is less than 1 if P i
tk
(Wtj −Wtk) > −Xi

tj ,tk
or(

P i
tk

Ptj

Etj −
P i
tk

Ptk

Etk

)
> −Xi

tj ,tk
.

Since P 1
tk
+ P 2

tk
= Ptk for all k, it follows that

P i
tk

Ptk
∈ (0, 1). If

P 1
tk

Ptk
goes to zero,

then
P 2
tk

Ptk
goes to one. For the left-hand side to remain negative, it must be that

P i
tk

Ptj

Etj <
P i
tk

Ptk

Etk ⇐⇒ Ptk

Ptj

<
Etk

Etj

.

Letting the ratio
P 1
tk

Ptk
go to zero for household member 1, we get the restriction

0− > −X1
tj ,tk

.

This condition can clearly be satisfied. For household member 2, we get the

restriction
P 2
tk

Ptj

Etj − Etk < −X2
tj ,tk

.

Since
Ptk
Ptj

is bounded, we can pick Etk small enough and Xi
tj ,tk

large enough such

13



that this inequality holds for all personalized prices.

Observe that Xi
tj ,tk

depends on latent prices P i
tk
, but P1

tk
+P2

tk
= 1 such that

the data can always be picked to obtain a desired sign on Xi
tj ,tk

. Furthermore,

it is possible to pick X1
tj ,tk

and X2
tj ,tk

to have different signs. Thus, our previous

discussion leads to three possible scenarios depending on the data:

(i) Suppose Xi
tj ,tk

< 0 and Xi
tk,tj

< 0. Without loss of generality, suppose

P i
tk
(Wtj −Wtk) ≥ 0 such that P i

tj (Wtk−Wtj ) ≤ 0. By GARP, aitk,tj ≤ 0 im-

plies aitj ,tk ≥ 0. Thus, the pair (tj , tk) yields an uninformative bound, but

the pair (tk, tj) may yield an informative bound. Precisely, since aitk,tj ≥ 0,

Xi
tk,tj

< 0 and P i
tj (Wtk −Wtj ) > 0, we fall in Case 3. There are values of

personalized prices such that the upper bound is informative.

(ii) Suppose Xi
tj ,tk

> 0 and Xi
tk,tj

> 0. Without loss of generality, suppose

P i
tk
(Wtj −Wtk) ≥ 0 such that P i

tj (Wtk −Wtj ) ≤ 0. Then, the pair (tj , tk)

gives an uninformative bound, but the pair (tk, tj) yields an informative

lower bound if aitk,tj ≥ 0, and can yield an informative upper bound if

aitk,tj ≤ 0.

(iii) Suppose Xi
tj ,tk

> 0 and Xi
tk,tj

< 0, then there is no guarantee that an

informative bound can arise. Indeed, it is possible to pick P i
tk
(Wtj−Wtk) ≥

0 and P i
tj (Wtk −Wtj ) ≤ 0 such that both (tj , tk) and (tk, tj) fall in Case 1

for all personalized prices. This situation is only globally relevant if there

are two time periods.

The proof of Proposition 2 informs us that, given a data set, the bounds on

RTS depend on the particular solution of personalized prices and children welfare

that rationalizes the data. The information of each solution can be combined to

recover bounds on the average RTS and thus bounds on the average production

function. Suppose we get an informative lower bound L at (P i
t , P

i
t ,Wt)t∈T and

an informative upper bound U at (P̃ i
t , P̃

i
t , W̃t)t∈T . Although neither solution

provides both informative lower and upper bounds on RTS, the identified set

for the average RTS does as it gives 1
2 · ([L, 1] + (0, U ]) = [L2 ,

1+U
2 ].10

To get some intuition on the mechanism by which household member choices

provide information on RTS, consider the case where Xi
tj ,tk

> 0 and Xi
tk,tj

> 0.

10The same idea applies if we consider the identified set on the average RTS in the cross-
section. Later on, we exploit this insight to obtain meaningful bounds the average production
function.
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Without loss of generality, suppose P i
tk
(Wtj − Wtk) ≥ 0 such that P i

tj (Wtk −
Wtj ) ≤ 0. Further suppose aitk,tj ≤ 0 such that an informative upper bound is

obtained from the data. Since aitk,tj ≤ 0, household members prefer the alloca-

tion (litj , q
i
tj , Qtj ,Wtj ) over (l

i
tk
, qitk , Qtk ,Wtk) in period tj . Since a

i
tk,tj

≤ 0 despite

Xi
tk,tj

> 0, it must be that (litj , q
i
tj , Qtj ,Wtj ) is preferred to (litk , q

i
tk
, Qtk ,Wtk) be-

cause children welfare is sufficiently more enticing. Children welfare is more

enticing if it gives a higher marginal utility or when P i
tj is large, but this exactly

occurs when RTS is not too large.

4 Empirical Specification

The previous section showed the Afriat inequalities provide restrictions that can

be used to nonparameterically (partially) identify the production function. Even

if identification was actually achieved, we would possibly still need many more

observations than what is available in typical panel data sets. As such, this

section specializes the production technology.

4.1 Cobb-Douglas Technology

In what follows, we choose to focus on a Cobb-Douglas technology.

Assumption 4. The production function is Cobb-Douglas such that

Wjt = (h1jt)
αj1(h2jt)

αj2(cjt)
αj3eϵjt .

The Cobb-Douglas technology is a natural choice as it is homogeneous of

degree αj1+αj2+αj3. Furthermore, it is easy to see that the output elasticities

are given by

αj1 =
RTSw1

jth
1
jt

wjth1jt + wjth2jt + cjt

αj2 =
RTSw2

jth
2
jt

wjth1jt + wjth2jt + cjt

αj3 =
RTScjt

wjth1jt + wjth2jt + cjt
.

In words, the model implies that each output elasticity equates a fraction RTS

of its share of total children expenditure. These shares are constant in time,

regardless of changes in the shadow price of children welfare, Pjt. The next

result warns against ignoring productivity shocks in the model.
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Claim 1. Suppose Assumptions 1-4 hold. If productivity shocks are ignored,

then the data may erroneously reject the model at the true return to scale.

Proof. In what follows, we remove the j subscript from the variables. Suppose

the data are rationalized by the model at the true return to scale RTS0 ∈ (0, 1]

and the true children welfare Wt = (h1t )
α1(h2t )

α2(ct)
α3eϵt . Suppose now the

econometrician ignores productivity shocks and assumes

W̃t = (h1t )
α1(h2t )

α2(ct)
α3 .

Conditional on RTS0, the output elasticities are identified. Therefore, children

welfare is also identified. From the first-order conditions of the model and Lemma

1, we have

P̃t =
Et

RTS0W̃t

.

Since W̃t is identified, it follows that P̃t is also identified. It is then obvious that

the Afriat inequalities

U i
s − U i

t ≤ λi
t

[
wi
t(l

i
s − lit) + (qis − qit) + P i

t(Qs −Qt) + P̃ i
t (W̃s − W̃t)

]
can be rejected by the data even if the data are consistent with the Afriat

inequalities under the correct specification of the production function.

Since output elasticities are a function of returns to scale, Claim 1 implies that

ignoring productivity shocks may lead to inconsistent output elasticities.11 The

next result shows that the first-order conditions of the model have empirical bite

under the Cobb-Douglas specification.

Claim 2. Suppose Assumptions 1-4 hold. The first-order conditions of the model

are refutable independently of returns to scale.

Proof. By Lemma 1, we have

PjtWjt = RTS−1(w1
jth

1
jt + w2

jth
2
jt + cjt) ∀t ∈ T ,

where RTS ∈ (0, 1]. For the sake of simplicity, suppose there are only two time

11More generally, productivity shocks are useful as they may absorb omitted variables that
could otherwise bias the output elasticities.
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periods. As such, we have

Pj2Wj2

Pj1Wj1
=

(w1
j2h

1
j2 + w2

j2h
2
j2 + cj2)

(w1
j1h

1
j1 + w2

j1h
2
j1 + cj1)

.

Since output elasticities are time invariant, it must be that the following set of

equations holds

Pj2Wj2

Pj1Wj1
=

w1
j2h

1
j2

w1
j1h

1
j1

Pj2Wj2

Pj1Wj1
=

w2
j2h

2
j2

w2
j1h

2
j1

Pj2Wj2

Pj1Wj1
=

cj2
cj1

.

Note that these equations do not depend on returns to scale. Furthermore, they

can easily be violated such as with w1
j2h

1
t2 = 1/2 and w2

j2h
2
t2 = cj2 = 1/4.

Contrary to the fully nonparametric setup, Claim 2 shows that the first-order

conditions have meaningful implications that can be tested in the data given a

Cobb-Douglas specification. Still, the first-order conditions do not imply any

restriction on returns to scale and thus on the output elasticities. Fortunately,

Proposition 2 shows that the Afriat inequalities provide the missing source of

identification to learn about the production function.

4.2 Measurement Error

Claim 2 shows the the model implies a set of overidentifying restrictions on

output elasticities. Hence, any measurement error in the inputs, however small,

would lead to the erroneous rejection of the model. It follows that any test of

the model that does not address this issue would be dubious in our framework.

For this reason, we impose mild centering conditions on measurement error. Let

mx
t := xt − x⋆t denote the difference between the observed and true value of a

variable xt in period t.

Assumption 5. E[mx
t ] = 0, where x ∈ {h1, h2, c}, t = 1, 2, . . . , T .

Assumption 5 requires that observed inputs be consistent with the true inputs

on average in the cross-section. Note that we do not require the distribution of

measurement error to be parametric or to be identical over time. An indirect

benefit of introducing measurement error in inputs is that we will be able to
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keep households with missing inputs in our application. Further details about

the data are discussed in Section 6.

5 Testing and Estimation

This section presents the statistical framework used for testing the model and

making inference on the production function.

5.1 Testing

Let ζj := {(U i
jt, λ

i
jt,P i

jt, P
i
jt,Wjt,αjt, ωjt,m

x
jt)i∈{1,2},x∈{h1,h2,c}}t∈T ∈ Z|D de-

note the set of household-specific latent variables in the model, where Z denote

the support of the latent variables and D denote the support of the data. Our

revealed preference characterization along with our moment conditions can be

used to define the statistical rationalizability of a panel data set D := {Dj}j∈N .

To this end, write the constraints of the model in the form of moment functions:

gUist(Dj , ζj) := 1

(
U i
js − U i

jt ≤ λi
jt

[
wi
jt(l

i
js − lijt) + (qijs − qijt)+

+ P i
jt(Qjs −Qjt) + P i

jt(Wjs −Wjt)
])

− 1

gα1
t (Dj , ζj) := 1

(
αjt1 =

w1
jth

1
jt

PjtWjt

)
− 1

gα2
t (Dj , ζj) := 1

(
αjt2 =

w2
jth

2
jt

PjtWjt

)
− 1

gα3
t (Dj , ζj) := 1

(
αjt3 =

cjt
PjtWjt

)
− 1

gWt (Dj , ζj) := 1

(
Wjt = (h1jt)

αj1(h2jt)
αj2(cjt)

αj3eϵjt

)
− 1

gmxt(Dj , ζj) := mx
jt,

where 1(·) denote the indicator function and equates 1 if the expression inside

the parenthesis is satisfied and 0 otherwise. The latent variables further need to

satisfy their support constraints such that q1jt + q2jt = qjt and P1
jt + P2

jt = 1.

Note that we let output elasticities vary in time in the moment functions

gαk
t (Dj , ζj). This guarantees that the equations for the output elasticities can

be satisfied in every period. To obtain time invariant output elasticities, we
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require their expected variance to be zero:

E[gv(Dj , ζj)] = 0,

where gv(Dj , ζj) := var(α). Since the variance is always positive, those moment

conditions are satisfied if and only if the variance is zero for all households.

As such, this formulation is equivalent to directly imposing that production

parameters are time invariant.12

In what follows, we let g(Dj , ζj) denote the vector of all moment functions,

g(m,v)(Dj , ζj) := (gm(Dj , ζj)
′, gv(Dj , ζj)

′)′ denote the set of moment functions

on measurement error and variance of output elasticities, and g−(m,v)(Dj , ζj) :=

(gU (Dj , ζj)
′, gα(Dj , ζj)

′, gW (Dj , ζj)
′)′ denote its complement.

Definition 6. Under Assumptions 1-5, a data setD is statistically rationalizable

if

inf
µ∈MZ|D

∥Eµ×π0 [g(D, ζ)]∥ = 0,

where MZ|D is the set of all conditional probability distributions on Z|D and

π0 ∈ MX is the observed distribution of D.

In its current form, the notion of statistical rationalizability has 2T 2+T+T+

T+T+3T+T moment conditions, including some that are discontinuous. Let dm

denote the number of moment conditions on measurement error and dv denote

the number of moment conditions on the variance of the output elasticities. The

following result due to Schennach (2014) and Aguiar and Kashaev (2021) allows

us to considerably reduce the complexity of the problem.

Proposition 3. Under Assumptions 1-5, a data set D is statistically rational-

izable if and only if

min
γ∈Rdm+dv

∥Eπ0 [ḡ(D;γ)]∥ = 0,

where

ḡj(Dj ;γ) :=

∫
ζj∈Z|D g

(m,v)
j (Dj , ζj) exp

(
γ′g

(m,v)
j (Dj , ζj)

)
1(g

−(m,v)
j (Dj , ζj) = 0) dη(ζj |Dj)∫

ζj∈Z|D exp
(
γ′g

(m,v)
j (Dj , ζj)

)
1(g

−(m,v)
j (Dj , ζj) = 0) dη(ζj |Dj)

,

and η(·|Dj) is an arbitrary user-specified distribution supported on Z|D such

that Eπ0 [log
(
Eη[exp

(
γ ′g(m,v)(D, ζ)

)
|D]
)
] exists and is twice continuously differ-

entiable in γ for all γ ∈ Rdm+dv .

12This is formally proven in Aguiar and Kashaev (2021).
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The previous result calls for some comments. First, the dimensionality of

the problem is greatly reduced as it only requires finding a finite dimensional

parameter γ rather than a distribution µ. Second, the moment conditions as-

sociated with the concavity of the utility functions, first-order conditions, and

production function equations are directly imposed on each household data set

such as to restrict the support of the unobservables. In particular, observe that

the optimization problem no longer includes any discontinuous moment condi-

tion. Finally, it is worth noting that the result states that there is no loss in

generality in averaging out the unobservables in the moment functions provided

the distribution is from the exponential family.

The simplification allowed by Proposition 3 requires finding unobservables

ζj that exactly satisfy the concavity of the utility functions, first-order condi-

tions, and production function equations. If the constraints were linear in the

unobservables, it would be possible to use a standard Hit-and-Run algorithm

to directly sample them from the feasible space defined by the intersection of

the inequalities and the system of equations. Unfortunately, the inequalities are

highly nonlinear, therefore making this approach impossible.13

We resolve this pervasive issue by proposing a blocked Gibbs sampler. The

idea is to break down the sampling procedure into multiple blocks, where each

block fixes a subset of all unobservables. The key is to create those blocks in

such a way that the inequalities are linear in the unobservables conditional on

a certain subset of all unobservables. Thus, the inequalities effectively define a

(conditional) convex polytope in each block. This allows for a straightforward

sampling procedure that guarantees the unobservables to exactly satisfy the in-

equalities, first-order conditions, and production function equations. The details

of the algorithm are provided in the Appendix.

5.2 Inference

One of the advantages of ELVIS is that testing and inference are quite simple

even if the model is partially identified. Indeed, testing the model can be done by

constructing the sample analogues of the averaged moments and by computing

a test statistic that is stochastically bounded by the chi-square distribution.

Inference is achieved by further adding moment conditions on parameters of

13In principle, it would be possible to use rejection sampling along with a mixed-integer
programming (MIP) problem to draw from the feasible space. However, these types of MIP
for collective models are NP-complete (Nobibon et al., 2016) so they do not scale well. Also,
rejection sampling is generally slow.
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interest and inverting the test statistic. Since the test statistic is stochastically

bounded by the chi-square distribution, it suffices to compare the value of the test

statistic against the chi-square critical value with dm+dv (dm+dv +dθ) degrees

of freedom for testing (inference). Importantly, the identified set is convex under

mild conditions.14

6 Data

We conduct our empirical analysis with the Longitudinal Internet Studies for the

Social Sciences (LISS) panel data. The panel consists of about 5000 households

representative of the Dutch population and gathers information about panelists

yearly. Since the LISS data directly include information on private expenditures

within the household, an important point of departure from the model is that

private expenditures qit are observed.

The time use data were collected by means of survey questions about the

time spent on a set of time use categories during the past seven days. Although

the survey is not demanding of household members memory, the actual time

allocations throughout the month are likely to differ from the ones reported at

the time of the survey. Similarly, data on monthly expenditures were collected

via survey questions. Additional details relating to data collection can be found

in Cherchye, De Rock and Vermeulen (2012).

Since our main goal is to estimate the production function, we only consider

measurement error in inputs. Nevertheless, we observe that our methodology

could accommodate measurement error in other variables. Another rationale

for our choice is that it ensures that the overidentifying restrictions implied by

the Cobb-Douglas specification can be rationalized by the model. We refer the

reader to Section 4 for details about the specification of the production function

and the restrictions on measurement error.

Our empirical analysis focuses on couples with children. This restriction

alone reduces the number of households to about a thousand. We further restrict

our sample to those with nonmissing and nonzero wages, private expenditures,

and public expenditures. For households with missing or zero data on inputs,

we impute their values. Note that our treatment of measurement error explicitly

handles the imperfection of our imputation. Lastly, we restrict our sample to

households that are in the panel for three periods.

14We refer the reader to Aguiar and Kashaev (2021) for additional details about the statistical
procedure.
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The final sample consists of 147 couples with children observed over 3 time

periods pooled from the years 2008 to 2017. While our sample size is relatively

small, we note that it is comparable with Cherchye, De Rock and Vermeulen

(2012) despite our restriction to panel data. Summary statistics of the sample

are displayed in Table 1. Further details about the sample construction are given

in the Appendix.

Table 1: Sample Summary Statistics

Husband Wife Household

Mean Std dev. Mean Std dev. Mean Std dev.

Age 46.24 8.13 43.91 7.42

Wage (EUR/hour) 14.09 8.54 12.75 11.53

Number of children 1.98 0.83

Mean age of children 12.88 6.58

Childcare (hours/week) 10.44 7.83 17.52 13.25

Work (hours/week) 36.90 6.13 23.33 7.87

Private expenditure (EUR/month) 379.05 355.26 412.15 357.29

Public expenditure (EUR/month) 2749.44 7670.31

Children expenditure (EUR/month) 517.93 536.27

Total households 147

7 Results

This section recovers confidence sets on expected returns to scale and expected

output elasticities. Then, it investigate how demographic characteristics such as

the education level of each parent impacts the production of children welfare.

7.1 Returns to Scale

To recover the 95% confidence set on expected returns to scale, we test the model

at various values for the expected returns to scale. Since the confidence set is

convex, we only need to find the lower and upper bounds. We find that the 95%

confidence set on expected returns to scale is [0.225, 0.35]. Since the confidence

set is nonempty, we conclude that the model is not rejected by the data.

7.2 Output Elasticities

To recover 95% confidence sets on the expected output elasticities, we allow

household-specific returns to scale to vary fully on the support (0, 1]. The results

are reported in Figure 1.
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Figure 1: 95% Confidence Sets on Production Parameters

The results show that, on average, time inputs by mothers increases children

welfare by more than time inputs by fathers or children expenditure.

To assess the degree of heterogeneity in returns to scale across households, we

report the distribution of returns to scale obtained from the Monte Carlo Markov

Chain (MCMC) used in the calculation of the average moment functions. The

distribution is reported in Figure 2.

Figure 2 makes clear that there is significant heterogeneity in returns to scale

and, hence, in output elasticities. Further, the vertical lines heuristically show

that certain observed demographics such as education impact the production

function.15

7.3 Heterogeneity

Figure 2 shows significant heterogeneity in the production technology across

households. Accordingly, this section aims quantify the role of observables in

generating those differences. Due to the small sample size, we choose to incor-

porate a linear regression into our model such that

α2

α1
= Xβ +Cδ + ω, (2)

15The vertical lines for average returns to scale in Figure 2 is based on the education level of
the male in the household.
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Figure 2: MCMC Distribution of Returns to Scale

where αk represents output elasticities with respect to input k, X is a set of

variables of interest, β is a set of parameters of interest, C is a set of control

variables, δ is a set of nuisance parameters, and ω is a random error. The

parameters of this regression are unbiased and consistent if the error is mean

zero conditional on the data.

Assumption 6. E[ω|X,Z] = 0.16

We wish to emphasize that this regression equation is not estimated separately

from the rest of the model. Rather, it is imposed as another equation restriction

within the model.

We focus on the effects of education on the output elasticities and include

number of children and the average age of children in the household as con-

trols. The education of each household member is a categorical variable that

reflects the type of education. The first category represents primary school and

pre-vocational secondary education (VMBO). The second category represents

general education that leads to higher education (HAVO and VWO) and voca-

tional education (MBO) that can lead to higher education. The third category

represents higher education (HBO, WO).

The 95% confidence sets of each parameter associated with the education

level of each household member are reported in Table 2, where the effect of each

16In the results derived below, we imposed and tested E[Xω] = 0. We view the nonrejection
of the restriction as evidence that Assumption 6 is reasonable.
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education level is relative to the first category of education.

Table 2: 95% Confidence Sets on β

Educationa Father Mother

95% confidence set
havo, vwo & mbo [−3.0,−1.20] [0.65, 2.0]

hbo & wo [−3.6,−1.7] [0.875, 2.1]
a The education category “havo, vwo, & mbo” represents general education that
leads to higher education and vocational education that can lead to higher educa-
tion. The education category “hbo & wo” represents higher education.

The results in Table 1 show that parents with higher education levels have,

on average, larger output elasticities relative to their partner compared to par-

ents with the lowest level of education, everything else equal. Note that the

coefficients are negative for fathers because the dependent variable is the mother-

to-father output elasticity ratio in the regression equation (2). Also, it seems

that output elasticities with respect to time inputs are monotone in education

for both parents. Finally, observe that the results in Table 2 further imply that

households whose parents have higher education levels have larger returns to

scale on average.

8 Conclusion

This paper exploits the full empirical content of the collective model available

in panel data to investigate heterogeneity in the production technology. The

level of flexibility allowed forces us into the realm of partial identification. As

such, we propose a novel estimation strategy that makes it possible to tractably

analyze the model and to conduct valid statistcal testing and inference. In our

application, we find that constant returns to scale is inconsistent with the data

in our collective labor supply model with children. Furthermore, we find that

education has a significant impact on the effects of parental time inputs on the

production of children welfare. We view the treatment of labor nonparticipation

in collective models with children as an interesting extension for future research,

and we observe that our approach seems appropriate for such endeavor.
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Appendix

A Sample Construction

For each household, we compute how many children live at home. We focus on

households with children living at home rather than households with children as

it is a precondition for household production. We drop single households and

those that do not have any child living at home. Next, we remove households

where one or both members have missing wages. Finally, we remove households

with missing private expenditures or missing public expenditures.

We impute missing and zero values of hours worked, childcare, and children

expenditure for households that remain in the sample. We treat zeros as missing

because they are highly unrealistic. The imputation is a simple year average

of the variable for households that satisfy our previous selection criteria. This

imputation is likely to be an overestimate of the actual value for some households

and an underestimate for others. Hence, it should be consistent with our moment

conditions on measurement error.

Besides the imputation for some missing or zero inputs, we compute leisure

of each household member as a residual according to the following equation:

lit = 168− 56− bit − hit,

where lit is leisure, 168 is the total number of hours in a week, 56 is the number

of hours spent sleeping in a week, bit is time spent working, hit is time spent

on childcare. Clearly, our construction of leisure may be inaccurate. We tackle

this problem by allowing for measurement error in leisure. Precisely, since the

time constraint requires lit + bit + hit = 168 − 56 and hit is mismeasured, we let

true leisure be minus true childcare (l⋆it = −h⋆it ) such that the time constraint

holds at the true variables. These weekly variables are then scaled such as to

obtain time inputs for the average number of days in a month. Since there are

seven days in a week and a month has slightly more than 30 days on average,

we multiply time inputs by 4.3.

As a last refinement of the sample, we remove households that have public

expenditure equal to zero as it is highly unrealistic and drop households that are

part of the LISS data for strictly less than 3 years. To obtain a balanced panel,

we keep the first 3 observations of each household that is present for strictly

more than 3 years. Thus, our sample is composed of households from various
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sets of 3 periods (e.g., 2009-2010-2012 or 2010-2012-2015). We limit ourselves

to a three-year panel despite the greater empirical bite that could be obtained

with additional periods to avoid any additional decrease in the sample size.

B Proofs

B.1 Proof of Theorem 1

(i) =⇒ (ii)

The household problem can be written as

max
(l1,l2,h1,h2,q1,q2,Q,c)∈R2

+×R2
++×R2L

+ ×R+×R++

µ1
tU

1(l1, q1, Q,Wt) + µ2
tU

2(l2, q2, Q,Wt),

subject to satisfying the household constraints

(q1 + q2) +Q+ c = w1
t (1− l1 − h1) + w2

t (1− l2 − h2).

The first-order conditions are given by

µi
t

∂U i

∂li
= ηtw

i
t

µi
t

∂U i

∂qi
= ηt.∑

i

µi
t

∂U i

∂Wt
· ∂Wt

∂h1
= ηtw

1
t

∑
i

µi
t

∂U i

∂Wt
· ∂Wt

∂h2
= ηtw

2
t

∑
i

µi
t

∂U i

∂Wt
· ∂Wt

∂c
= ηt

∑
i

µi
t

∂U i

∂Q
= ηt,

where the equalities hold for some supergradient of the utility function.17 Next,

17For corner solutions, the first-order conditions may only hold with inequality. The argument
does not require any substantive change to accommodate this possibility.
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define

λi
t =

ηt
µi
t

P i
t =

µi
t

ηt

∂U i

∂Wt

P i
t =

µi
t

ηt

∂U i

∂Q
.

The first-order conditions can be rewritten as

∂U i

∂li
= λi

tw
i
t (3)

∂U i

∂qi
= λi

t. (4)

(P 1
t + P 2

t )
∂Wt

∂h1
= w1

t (5)

(P 1
t + P 2

t )
∂Wt

∂h2
= w2

t (6)

(P 1
t + P 2

t )
∂Wt

∂c
= 1 (7)

P1
t + P2

t = 1. (8)

Since the children welfare function is unknown, equations (5)-(7) require the

existence of numbers P i
t , Ẇh1

t
, Ẇh2

t
, and Ẇct > 0 such that

(P 1
t + P 2

t )Ẇh1
t
= w1

t

(P 1
t + P 2

t )Ẇh2
t
= w2

t

(P 1
t + P 2

t )Ẇct = 1.

Next, using the concavity of the utility functions we obtain

U i
s − U i

t ≤
[
∂U i

∂lit
(lis − lit) +

∂U i

∂qit
(qis − qit) +

∂U i

∂Q
(Qs −Qt) +

∂U i

∂Wt
(Ws −Wt)

]
,

where U i
t := U i(lit, q

i
t, Qt,Wt) for all t ∈ T . Substituting the derivatives of the

utility function for their expressions yields

U i
s − U i

t ≤ λi
t

[
wi
t(l

i
s − lit) + (qis − qit) + P i

t(Qs −Qt) + P i
t (Ws −Wt)

]
.

Putting everything together, these (in)equalities should hold for some U i
t , λ

i
t > 0,

P i
t > 0 such that P1

t + P2
t = 1, P i

t > 0 such that P 1
t + P 2

t = Pt, and Ẇh1
t
, Ẇh2

t
,
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Ẇct , Wt > 0, t = 1, . . . , T .

(ii) =⇒ (i)

We have to show that, if Theorem 1 (ii) holds, then there exist concave utility

functions and a production function concave in (h1, h
2, c) that rationalize the

data. Thus, define

W (h1, h2, c, ϵ) := min
t∈T

{
Wt +

1

Pt

[
w1
t (h

1 − h1t ) + w2
t (h

2 − h2t ) + (c− ct)
]}

.

This function is continuous, increasing, and concave in (h1, h2, c). Further, the

supergradients of W (h1t , h
2
t , ct, ϵt) yield equations (5)-(7). Finally, note that the

children welfare production function is such that W (h1t , h
2
t , ct, ϵt) ≡ Wt for all

t ∈ T . Next, let τ = {tj}mj=1, m ≥ 2, tj ∈ T denote a sequence of indices and I
denote the set of all such indices. Define

U i(li, qi, Q,W ) :=

min
τ∈I

{
λi
tm

[
wi
tm(l

i − litm) + (qi − qitm) + P i
tm(Q−Qtm) + P i

tm(W −Wtm)
]
+

+
m−1∑
j=1

λi
tj

[
wi
tj (l

i
tj+1

− litj ) + (qitj+1
− qitj ) + P i

tj (Qtj+1 −Qtj ) + P i
tj (Wtj+1 −Wtj )

]}
.

The function is the pointwise minimum of a collection of linear functions. Thus,

it is continuous, increasing, and concave. By definition of U i, there is some

sequence of indices such that

U i(lit, q
i
t, Qt,Wt) ≥

λi
tm

[
wi
tm(l

i
t − litm) + (qit − qitm) + P i

tm(Qt −Qtm) + P i
tm(Wt −Wtm)

]
+

+
m−1∑
j=1

λi
tj

[
wi
tj (l

i
tj+1

− litj ) + (qitj+1
− qitj ) + P i

tj (Qtj+1 −Qtj ) + P i
tj (Wtj+1 −Wtj )

]
.

Add any allocation (li, qi, Q,W ) to the sequence and use the definition of U i
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once again to obtain

λi
t

[
wi
t(l

i − lit) + (qi − qit) + P i
t(Q−Qt) + P i

t (W −Wt)
]
+

+ λi
tm

[
wi
tm(l

i
t − litm) + (qit − qitm) + P i

tm(Qt −Qtm) + P i
tm(Wt −Wtm)

]
+

+

m−1∑
j=1

λi
tj

[
wi
tj (l

i
tj+1

− litj ) + (qitj+1
− qitj ) + P i

tj (Qj+1 −Qtj ) + P i
tj (Wtj+1 −Wtj )

]
≥ U i(li, qi,W,Q).

Hence, rearranging the previous expression yields

U i(li, qi, Q,W )− U i(lit, q
i
t, Qt,Wt) ≤ λi

t

[
wi
t(l

i − lit) + (qi − qit) + P i
t(Q−Qt) + P i

t (W −Wt)
]
.

Note that the two first supergradients of U i(lit, q
i
t, Qt,Wt) give the first-order

conditions (3)-(4). As such, Theorem 1 (ii) has the same implications as the

household problem (1).

(ii) =⇒ (iii)

Let us begin by noting that the Afriat inequalities can be combined such that

for all {tk}mk=1 ∈ I and all i ∈ {1, 2}

0 ≤
m∑
k=1

λi
tk+1

aitk,tk+1
.

Observe that the set of all sequences I can be reduced to the set of all finite

sequences as any sequence that satisfies this inequality is also satisfied without

cycles. For the sake of a contradiction, suppose GARP is not satisfied for some

household member. Then, there exists a cycle such that ait1,t2 ≤ 0, ait2,t3 ≤ 0,

. . . , aitm,t1 < 0. Thus, it follows that

λi
t2a

i
t1,t2 + λi

t3a
i
t2,t3 + · · ·+ λi

t1a
i
tm,t1 < 0,

a contradiction of cyclical monotonicity.

(iii) =⇒ (ii)

Suppose that GARP holds for each household member. Then, an application of

Fostel, Scarf and Todd (2004) shows the existence of the Afriat inequalities for

each household member.
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C Sampling from the Feasible Space: A Blocked Gibbs Sampler

This section explains how to draw latent variables that satisfy the household

problem. Since private expenditures are directly observed in our application, we

do not need to find such quantities in our procedure. It is quite straightforward

to extend our procedure to further find private expenditures if those were not

observed, however.

Let Pt = P 1
t + P 2

t and recall that the data are consistent with the model

if there exist personalized prices P i
t > 0, personalized prices P i

t > 0 such that

P1
t + P2

t = 1, numbers U i, λi
t, Wt > 0, and true inputs l⋆it , h⋆it , c

⋆
t > 0 such that

for all s, t ∈ T and all i ∈ {1, 2}

U i
s − U i

t ≤ λi
t

[
wi
t(l

⋆i
s − l⋆it ) + (qis − qit) + P i

t(Qs −Qt) + P i
t (Ws −Wt)

]
α1 =

w1
t h

⋆1
t

PtWt

α2 =
w2
t h

⋆2
t

PtWt

α3 =
w1
t h

⋆1
t

PtWt

ϵt = log(Wt)− α1 log
(
h⋆1t
)
− α2 log

(
h⋆2t
)
− α3 log(c

⋆
t ),

where the last equation is obtained from the natural logarithm of the production

function equation. Suppose we have a solution

(U i
t (r), λ

i
t(r), l

⋆i
t (r), h⋆it (r), c

⋆
t (r), P

i
t (r),P i

t(r))i∈{1,2},t∈T ,

where r denote the rth solution found by some solver. We provide a feasible

algorithm that guarantees the next set of latent variables to be in the feasible

space conditional on the data. The algorithm works provided the feasible space

is nonempty in each block and standard regularity conditions associated with

Gibbs samplers hold.

Step 1: Marginal Utility of Expenditure

Let Λ = [1, L] denote the support of λi
t, where L is an arbitrarily large number.

Given a solution at step r, we want to find λi
t(r + 1) that satisfies

U i
s(r)− U i

t (r) ≤ λi
t(r + 1)

[
wi
t(l

⋆i
s (r)− l⋆it (r)) + (qis − qit)+

+ P i
t(r)(Qs −Qt) + P i

t (r)
(
Ws(r)−Wt(r)

)]
.
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For convenience, let

denomi :=
[
wi
t(l

⋆i
s − l⋆it ) + (qis − qit) + P i

t(r)(Qs −Qt) + P i
t (r)

(
Ws(r)−Wt(r)

)]
.

It follows that

λi
t(r + 1)∆

U i
s(r)− U i

t (r)

denomi
,

where ∆ :=> if denomi > 0 and ∆ :=< otherwise. Note that each λi
t(r + 1)

has T bounds. The greatest lower bound on λi
t(r + 1) is the maximum between

one and the greatest lower bound. If there is no lower bound, then the greatest

lower bound is one. Likewise, the least upper bound is the minimum between

one and the least upper bound. If there is no upper bound, then the least upper

bound is one. Draw λi
t(r+1) uniformly over the support defined by the greatest

lower bound and least upper bound.

Step 2: Children Welfare, Leisure, and Childcare

Conditional on the new solution λi
t(r+1), we want children welfare, true leisure,

and true childcare to be positive such that

Wt(r) + αξ(Wt) > 0 (9)

h⋆1t (r) + αξ(h⋆1t ) > 0 (10)

h⋆2t (r) + αξ(h⋆2t ) > 0 (11)

l⋆1t (r) + αξ(l⋆1t ) > 0 (12)

l⋆2t (r) + αξ(l⋆2t ) > 0. (13)

These positivity constraints provide a set of inequality restrictions on α. Next,

we must further ensure that new leisure and new childcare of each household

member satisfy the normalized time constraint

h⋆it (r) + αξ(h⋆it ) +mi
t + l⋆it (r) + αξ(l⋆it ) = 1.

This equation implies ξ(h⋆it ) = −ξ(l⋆it ), i ∈ {1, 2}. That is, the direction taken

for new childcare is the opposite of the direction for new leisure.

Next, it is important to ensure new children welfare and new childcare are

consistent with a positive children expenditure:

w1
t (h

⋆1
t (r) + αξ(h⋆1t )) + w2

t (h
⋆2
t (r) + αξ(h⋆2t )) ≤ Pt(r)(Wt(r) + αξ(Wt)).
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Rearranging, one obtains

α∆
Pt(r)Wt(r)− w1

t h
⋆1
t (r)− w2

t h
⋆2
t (r)

w1
t ξ(h

⋆1
t ) + w2

t ξ(h
⋆2
t )− Ptξ(Wt)

,

where ∆ :=< if w1
t ξ(h

1
t )+w2

t ξ(h
2
t )−Ptξ(Wt) > 0 and ∆ :=> otherwise. Further,

we must also ensure that new children welfare and new childcare are compatible

with decreasing returns to scale given children expenditure:

w1
t (h

⋆1
t (r) + αξ(h⋆1t )) + w2

t (h
⋆2
t (r) + αξ(h⋆2t )) + ct(r) ≤ Pt(r)(Wt(r) + αξ(Wt)).

Rearranging, one obtains

α∆
Pt(r)Wt(r)− w1

t h
⋆1
t (r)− w2

t h
⋆2
t (r)− ct(r)

w1
t ξ(h

⋆1
t ) + w2

t ξ(h
⋆2
t )− Ptξ(Wt)

,

where ∆ :=< if w1
t ξ(h

1
t ) + w2

t ξ(h
2
t )− Ptξ(Wt) > 0 and ∆ :=> otherwise.

Finally, we want new children welfare Wt(r + 1), new leisure l⋆it (r + 1), and

new childcare h⋆it (r + 1) to satisfy

U i
s(r)− U i

t (r) ≤ λi
t(r + 1)

[
wi
t(l

⋆i
s (r) + αξ(l⋆is )− l⋆it (r)− αξ(l⋆it )) + (qis − qit)+

+ P i
t(r)(Qs −Qt) + P i

t (r)
(
Ws(r) + αξ(Ws)−Wt(r)− αξ(Wt)

)]
.

This inequality can be rewritten as

U i
s(r)− U i

t (r)− λi
t(r + 1)

[
wi
t(l

⋆i
s (r)− l⋆it (r)) + (qis − qit) + P i

t(r)(Qs −Qt)

+ P i
t (r)

(
Ws(r)−Wt(r)

)]
≤ αλi

t(r + 1)
(
P i
t (r)(ξ(Ws)− ξ(Wt)) + wi

t(ξ(l
⋆i
s )− ξ(l⋆it ))

)
.

Let numi denote the left-hand side of this inequality. Thus, we have

α∆
numi

λi
t(r)

(
P i
t (r)(ξ(Ws)− ξ(Wt)) + ξ(wi

t)(l
⋆i
s − l⋆it )

) ,
where ∆ :=> if λi

t(r)
(
P i
t (r)(ξ(Ws)−ξ(Wt))+wi

t(ξ(l
⋆i
s )−ξ(l⋆it ))

)
> 0 and ∆ :=<

otherwise. Draw α uniformly over its support as defined by the greatest lower

bound and the least upper bound from the previous sets of inequalities. We ob-

tain (Wt(r+1), l⋆it (r+1), h⋆it (r+1))t∈T by picking α uniformly over its support

defined by the greatest lower bound and least upper bound derived from the

above inequalities.
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Step 3: Utilities and Personalized Prices

We want personalized prices to be positive such that

P i
t(r) + βξ(P i

t) > 0 (14)

P i
t (r) + βξ(P i

t ) > 0. (15)

These inequalities can be transformed to get bounds on β:

β∆− P i
t(r)

ξ(P i
t)

(16)

β∆− P i
t (r)

ξ(P i
t )
, (17)

where ∆ :=> if ξ(·) > 0 and ∆ :=< otherwise. Next, similar to the previous

step it is important to ensure new personalized prices for children welfare are

consistent with a positive children expenditure:

w1
t h

⋆1
t (r + 1) + w2

t h
⋆2
t (r + 1) ≤ (P 1

t (r) + βξ(P 1
t ) + P 2

t (r) + βξ(P 2
t ))Wt(r + 1).

Rearranging, one obtains

β∆
w1
t h

⋆1
t (r + 1) + w2

t h
⋆2
t (r + 1)− (P 1

t (r) + P 2
t (r))Wt(r + 1)

(ξ(P 1
t ) + ξ(P 2

t ))Wt(r + 1)
,

where ∆ :=> if (ξ(P 1
t )+ξ(P 2

t ))Wt(r+1) > 0 and ∆ :=< otherwise. Further, we

must also ensure that new personalized prices for children welfare are compatible

with decreasing returns to scale given children expenditure:

w1
t h

⋆1
t (r+1)+w2

t h
⋆2
t (r+1)+ct(r) ≤ (P 1

t (r)+βξ(P 1
t )+P 2

t (r)+βξ(P 2
t ))Wt(r+1).

Rearranging, one obtains

β∆
w1
t h

⋆1
t (r + 1) + w2

t h
⋆2
t (r + 1) + ct(r)− (P 1

t (r) + P 2
t (r))Wt(r + 1)

(ξ(P 1
t ) + ξ(P 2

t ))Wt(r + 1)
,

where ∆ :=> if (ξ(P 1
t ) + ξ(P 2

t ))Wt(r + 1) > 0 and ∆ :=< otherwise.

Finally, starting with the new numbers λi
t(r + 1), Wt(r + 1), l⋆it (r + 1), and

h⋆it (r+1), we want new utilities U i
t (r+1) and new personalized prices P i

t(r+1),
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P i
t (r + 1) to satisfy

U1
s (r) + βξ(U1

s )− U1
t (r)− βξ(U1

t ) ≤

λ1
t (r + 1)

[
w1
t (l

⋆1
s (r + 1)− l⋆1t (r + 1)) + (q1s − q1t )+

+
(
P1
t (r) + βξ(P1

t )
)(
Qs −Qt

)
+
(
P 1
t (r) + βξ(P 1

t )
)(
Ws(r + 1)−Wt(r + 1)

)]
,

and

U2
s (r) + βξ(U2

s )− U2
t (r)− βξ(U2

t ) ≤

λ2
t (r + 1)

[
w2
t (l

⋆2
s (r + 1)− l⋆2t (r + 1)) + (q2s − q2t )+

+
(
P2
t (r) + βξ(P2

t )
)(
Qs −Qt

)
+
(
P 2
t (r) + βξ(P 2

t )
)(
Ws(r + 1)−Wt(r + 1)

)]
.

With some algebra, we can rewrite the inequalities for household member 1 as

β
[
ξ(U1

s )− ξ(U1
t ) + λ1

t (r + 1)
[
ξ(P1

t )
(
Qt −Qs

)
+ ξ(P 1

t )
(
Wt(r + 1)−Ws(r + 1)

)]]
≤ U1

t (r)− U1
s (r) + λ1

t (r + 1)
[
w1
t (l

⋆1
s (r + 1)− l⋆1t (r + 1)) + (q1s − q1t )+

+ P1
t (r)

(
Qs −Qt

)
+ P 1

t (r)
(
Ws(r + 1)−Wt(r + 1)

)]
,

and the inequalities for household member 2 as

β
[
ξ(U2

s )− ξ(U2
t ) + λ2

t (r + 1)
[
ξ(P2

t )
(
Qt −Qs

)
+ ξ(P 2

t )
(
Wt(r + 1)−Ws(r + 1)

)]]
≤ U2

t (r)− U2
s (r) + λ2

t (r + 1)
[
w2
t (l

⋆2
s (r + 1)− l⋆2t (r + 1)) + (q2s − q2t )+

+ P2
t (r)

(
Qs −Qt

)
+ P 2

t (r)
(
Ws(r + 1)−Wt(r + 1)

)]
.

For convenience, let

num1 := U1
t (r)− U1

s (r) + λ1
t (r + 1)

[
w1
t (l

⋆1
s (r + 1)− l⋆1t (r + 1)) + (q1s − q1t )+

+ P1
t (r)

(
Qs −Qt

)
+ P 1

t (r)
(
Ws(r + 1)−Wt(r + 1)

)]
denom1 := ξ(U1

s )− ξ(U1
t )+

+ λ1
t (r + 1)

[
ξ(P1

t )
(
Qt −Qs

)
+ ξ(P 1

t )
(
Wt(r + 1)−Ws(r + 1)

)]
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and

num2 := U2
t (r)− U2

s (r) + λ2
t (r + 1)

[
w2
t (l

⋆2
s (r + 1)− l⋆2t (r + 1)) + (q2s − q2t )+

+ P2
t (r)

(
Qs −Qt

)
+ P 2

t (r)
(
Ws(r + 1)−Wt(r + 1)

)]
denom2 := ξ(U2

s )− ξ(U2
t )+

+λ2
t (r + 1)

[
ξ(P2

t )
(
Qt −Qs

)
+ ξ(P 2

t )
(
Wt(r + 1)−Ws(r + 1)

)]
.

Therefore, we have

β∆
numi

denomi
,

where ∆ :=< if denomi > 0 and ∆ :=> otherwise. We obtain (U i
t (r+1),P i

t(r+

1), P i
t (r+1))t∈T by picking β uniformly over its support defined by the greatest

lower bound and least upper bound derived from the above inequalities.

Step 4: Children Expenditure

We need to pick new true children expenditure that is positive such that

c⋆t (r) + κξ(c⋆t ) > 0. (18)

In addition, new children expenditure must yield decreasing returns to scale such

that

w1
t h

⋆1
t (r + 1) + w2

t h
⋆2
t (r + 1) + c⋆t (r) + κξ(c⋆t ) ≤ Pt(r + 1)Wt(r + 1).

Rearranging, one gets

κ∆
Pt(r + 1)Wt(r + 1)− w1

t h
⋆1
t (r + 1)− w2

t h
⋆2
t (r + 1)− c⋆t (r)

ξ(c⋆t )
,

where ∆ :=< if ξ(c⋆t ) > 0 and ∆ :=> otherwise. We obtain c⋆t (r+ 1) by picking

κ uniformly over its defined by the greatest lower bound and least upper bound

derived from the above inequalities.

Step 5: Production Parameters and Productivity

We are left with the task to recover output elasticities and productivity shocks.

This requires no work as they are directly deduced from the first-order conditions
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and production function equation:

α1,t(r + 1) =
w1
t h

⋆1
t (r + 1)

Pt(r + 1)Wt(r + 1)

α2,t(r + 1) =
w2
t h

⋆2
t (r + 1)

Pt(r + 1)Wt(r + 1)

α3,t(r + 1) =
c⋆t (r + 1)

Pt(r + 1)Wt(r + 1)

ϵt(r + 1) = log(Wt(r + 1))− α1,t(r + 1) log
(
h⋆1t (r + 1)

)
− α2,t(r + 1) log

(
h⋆2t (r + 1)

)
− α3,t(r + 1) log(c⋆t ).

This last step of the Gibbs sampler combined with the previous steps give a

completely new solution to the model.

Sampling from the Feasible Space in 5 Easy Steps

Suppose an initial solution r = 0 to the household problem is given (e.g., by

solving a mixed-integer program). Then,

1. Given r, get (λi
t(r + 1))t∈T as outlined in Step 1.

2. Given 1, get (Wt(r + 1), l⋆it (r + 1), h⋆it (r + 1))t∈T as outlined in Step 2.

3. Given 1-2, get (U i
t (r + 1),P i

t(r + 1), P i
t (r + 1))t∈T as outlined in Step 3.

4. Given 1-3, get (c⋆t (r + 1))t∈T as outlined in Step 4.

5. Given 1-4, get (αt(r + 1), ϵt(r + 1))t∈T as outlined in Step 5.

6. Set r = r + 1 and repeat 1-5 until r = R > 0.

C.1 Miscellaneous

This subsection provides additional details about the sampling procedure.

Target Distribution

We ensure that the sampling procedure yields the desired least favorable distri-

bution on measurement error by using a Metropolis-Hastings algorithm. Once a

complete new solution is obtained from the Gibbs sampler, update the Markov

chain with the appropriate acceptance ratio. Note that the acceptance ratio
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depends on the target distribution. In our application, the target distribution is

proportional to a normal distribution:

dη̃(·|xi) ∝ exp
(
−||gω

i (xi, ei)||2
)
.

As pointed out by Schennach (2014), under mild regularity conditions the mean

and variance of the distribution are inconsequential for the validity of by Propo-

sition 3.

Length of the Monte Carlo Markov Chain

The Gibbs sampler generates a Markov Chain that suffers from autocorrelation.

For this reason, it is good practice to only keep a subset of the R solutions, a

technique known as thinning. In our application, we keep 5% of all solutions.

Also, the theory of stochastic processes tells us that convergence to the stationary

distribution may take some time —its existence follows by construction of the

Metropolis-Hastings algorithm. Accordingly, it is good practice to leave out the

first few solutions. In our application, we leave out the first 100000 solutions.

We then draw another 100000 solutions from the feasible space.
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